-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
4,833 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,283 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# formats: r:light | ||
# text_representation: | ||
# extension: .r | ||
# format_name: light | ||
# format_version: '1.5' | ||
# jupytext_version: 1.12.0 | ||
# kernelspec: | ||
# display_name: R | ||
# language: R | ||
# name: ir | ||
# --- | ||
|
||
library(digest) | ||
library(testthat) | ||
|
||
test_1.0 <- function() { | ||
test_that('Did not assign answer to an object called "model_matrix_X_train"', { | ||
expect_true(exists("model_matrix_X_train")) | ||
}) | ||
|
||
test_that("Solution should be a matrix", { | ||
expect_true("matrix" %in% class(model_matrix_X_train)) | ||
}) | ||
test_that("Solution should be a matrix", { | ||
expect_true("matrix" %in% class(matrix_Y_train)) | ||
}) | ||
|
||
expected_colnames <- c('mean_radius','mean_texture','mean_perimeter','mean_smoothness','mean_compactness','mean_concavity','mean_concave_points','mean_symmetry','mean_fractal_dimension','radius_error','texture_error','perimeter_error','smoothness_error','compactness_error','symmetry_error','fractal_dimension_error') | ||
given_colnames <- colnames(model_matrix_X_train) | ||
test_that("Data frame does not have the correct columns", { | ||
expect_equal(length(setdiff( | ||
union(expected_colnames, given_colnames), | ||
intersect(expected_colnames, given_colnames) | ||
)), 0) | ||
}) | ||
|
||
test_that("Matrix does not contain the correct number of rows", { | ||
expect_equal(digest(as.integer(nrow(model_matrix_X_train))), "e1ccdeeda146ea6a2b9098eac7f58ac2") | ||
}) | ||
test_that("Matrix does not contain the correct number of rows", { | ||
expect_equal(digest(as.integer(nrow(matrix_Y_train))), "e1ccdeeda146ea6a2b9098eac7f58ac2") | ||
}) | ||
|
||
test_that("Matrix does not contain the correct data", { | ||
expect_equal(digest(as.integer(sum(model_matrix_X_train[,"mean_radius"]) * 10e4)), "da0c890b39f1f7a79777df921f405a41") | ||
}) | ||
test_that("Matrix does not contain the correct data", { | ||
expect_equal(digest(as.integer(sum(matrix_Y_train))), "6ab59a5dc548cdbe65a353f73043f412") | ||
}) | ||
print("Success!") | ||
} | ||
|
||
test_1.1 <- function() { | ||
test_that('Did not assign answer to an object called "breast_cancer_cv_lambda_ridge"', { | ||
expect_true(exists("breast_cancer_cv_lambda_ridge")) | ||
}) | ||
|
||
test_that("Solution should be a cv.glmnet object", { | ||
expect_true("cv.glmnet" %in% class(breast_cancer_cv_lambda_ridge)) | ||
}) | ||
|
||
test_that("Data frame does not contain the correct number of rows", { | ||
expect_equal(digest(breast_cancer_cv_lambda_ridge$index[1,]), "c6df9ff55bfad3fa7254de0d17b5a7f5") | ||
}) | ||
|
||
test_that("Data frame does not contain the correct data", { | ||
expect_equal(digest(as.integer(breast_cancer_cv_lambda_ridge$cvm[97]*10e6)), "58664065b5f1854c8e2a89bc43a79959") | ||
}) | ||
|
||
print("Success!") | ||
} | ||
|
||
test_1.3 <- function() { | ||
test_that('Did not assign answer to an object called "breast_cancer_lambda_max_AUC_ridge"', { | ||
expect_true(exists("breast_cancer_lambda_max_AUC_ridge")) | ||
}) | ||
|
||
answer_as_numeric <- as.numeric(breast_cancer_lambda_max_AUC_ridge) | ||
test_that("Solution should be a number", { | ||
expect_false(is.na(answer_as_numeric)) | ||
}) | ||
|
||
test_that("Solution is incorrect", { | ||
expect_equal(digest(as.integer(answer_as_numeric * 10e6)), "d40f426836915bf80aad44792e069c0b") | ||
}) | ||
|
||
print("Success!") | ||
} | ||
|
||
test_1.5 <- function() { | ||
test_that('Did not assign answer to an object called "breast_cancer_ridge_max_AUC"', { | ||
expect_true(exists("breast_cancer_ridge_max_AUC")) | ||
}) | ||
|
||
test_that("Solution should be a glmnet object", { | ||
expect_true("glmnet" %in% class(breast_cancer_ridge_max_AUC)) | ||
}) | ||
|
||
test_that("Sultion does not contain the correct number of rows", { | ||
expect_equal(digest(as.integer(breast_cancer_ridge_max_AUC$lambda*10e3)), "3e58fec15b97b4b65a18dd280f434516") | ||
}) | ||
|
||
test_that("Solution does not contain the correct data", { | ||
expect_equal(digest(as.integer(sum(breast_cancer_ridge_max_AUC$beta)*10e5)), "e362f8ba11af909bd5dc45d9642efc7a") | ||
}) | ||
|
||
print("Success!") | ||
} | ||
|
||
#--------------- | ||
#deleted from current version | ||
|
||
# test_1.6 <- function() { | ||
# test_that('Did not assign answer to an object called "breast_cancer_cv_ordinary"', { | ||
# expect_true(exists("breast_cancer_cv_ordinary")) | ||
# }) | ||
|
||
# test_that("Solution should be a data frame", { | ||
# expect_true("cv.glmnet" %in% class(breast_cancer_cv_ordinary)) | ||
# }) | ||
|
||
|
||
# test_that("Solution does not contain the correct number of rows", { | ||
# expect_equal(digest(as.integer(breast_cancer_cv_ordinary$lambda[2])), "1473d70e5646a26de3c52aa1abd85b1f") | ||
# }) | ||
|
||
# test_that("Solution does not contain the correct data", { | ||
# expect_equal(digest(as.integer(breast_cancer_cv_ordinary$cvm[2]*10e6)), "685d8a3a85fdc1b00f0cce6597291ea3") | ||
# }) | ||
|
||
# print("Success!") | ||
# } | ||
|
||
#----------- | ||
|
||
test_1.6 <- function() { | ||
test_that('Did not assign answer to an object called "breast_cancer_AUC_models"', { | ||
expect_true(exists("breast_cancer_AUC_models")) | ||
}) | ||
|
||
# test_that("Solution should be a data frame", { | ||
# expect_true("data.frame" %in% class(breast_cancer_AUC_models)) | ||
# }) | ||
|
||
expected_colnames <- c("model", "auc") | ||
given_colnames <- colnames(breast_cancer_AUC_models) | ||
test_that("Data frame does not have the correct columns", { | ||
expect_equal(length(setdiff( | ||
union(expected_colnames, given_colnames), | ||
intersect(expected_colnames, given_colnames) | ||
)), 0) | ||
}) | ||
|
||
test_that("Data frame does not contain the correct number of rows", { | ||
expect_equal(digest(as.integer(nrow(breast_cancer_AUC_models))), "c01f179e4b57ab8bd9de309e6d576c48") | ||
}) | ||
|
||
test_that("Data frame does not contain the correct data", { | ||
expect_equal(digest(as.integer(sum(breast_cancer_AUC_models$auc) * 10e6)), "5631701a7b5ca282c043fe1af5ce9022") | ||
}) | ||
|
||
print("Success!") | ||
} | ||
|
||
test_1.7 <- function() { | ||
test_that('Did not assign answer to an object called "breast_cancer_cv_lambda_LASSO"', { | ||
expect_true(exists("breast_cancer_cv_lambda_LASSO")) | ||
}) | ||
|
||
test_that("Solution should be a cv.glmnet object", { | ||
expect_true("cv.glmnet" %in% class(breast_cancer_cv_lambda_LASSO)) | ||
}) | ||
|
||
test_that("Data frame does not contain the correct number of rows", { | ||
expect_equal(digest(breast_cancer_cv_lambda_LASSO$index[1,]), "cac17b80df37171f02a533a0962e81ec") | ||
}) | ||
|
||
test_that("Data frame does not contain the correct data", { | ||
expect_equal(digest(as.integer(breast_cancer_cv_lambda_LASSO$cvm[97]*10e6)), "c7f66da1cae4f223b9bae717f05900f7") | ||
}) | ||
|
||
print("Success!") | ||
} | ||
|
||
test_1.8 <- function() { | ||
test_that('Did not assign answer to an object called "breast_cancer_lambda_1se_AUC_LASSO"', { | ||
expect_true(exists("breast_cancer_lambda_1se_AUC_LASSO")) | ||
}) | ||
|
||
answer_as_numeric <- as.numeric(breast_cancer_lambda_1se_AUC_LASSO) | ||
test_that("Solution should be a number", { | ||
expect_false(is.na(answer_as_numeric)) | ||
}) | ||
|
||
test_that("Solution is incorrect", { | ||
expect_equal(digest(as.integer(answer_as_numeric * 10e6)), "3a2209228b4a81256404f5ad50412e01") | ||
}) | ||
|
||
print("Success!") | ||
} | ||
|
||
test_1.9 <- function() { | ||
test_that('Did not assign answer to an object called "breast_cancer_LASSO_1se_AUC"', { | ||
expect_true(exists("breast_cancer_LASSO_1se_AUC")) | ||
}) | ||
|
||
test_that("Solution should be a glmnet object", { | ||
expect_true("glmnet" %in% class(breast_cancer_LASSO_1se_AUC)) | ||
}) | ||
|
||
test_that("Sultion does not contain the correct number of rows", { | ||
expect_equal(digest(as.integer(breast_cancer_LASSO_1se_AUC$lambda*10e3)), "4abb356c7b8460ebf96ff801d6539873") | ||
}) | ||
|
||
test_that("Solution does not contain the correct data", { | ||
expect_equal(digest(as.integer(sum(breast_cancer_LASSO_1se_AUC$beta)*10e5)), "e8e1e9814f4b16d7df4e4aec6551a55b") | ||
}) | ||
|
||
print("Success!") | ||
} | ||
|
||
test_1.10 <- function() { | ||
test_that('Did not assign answer to an object called "answer1.10"', { | ||
expect_true(exists("answer1.10")) | ||
}) | ||
|
||
test_that('Solution should be a single character ("A", "B", "C", or "D")', { | ||
expect_match(answer1.10, "a|b|c|d", ignore.case = TRUE) | ||
}) | ||
|
||
answer_hash <- digest(tolower(answer1.10)) | ||
|
||
test_that("Solution is incorrect", { | ||
expect_equal(answer_hash, "f960eee34a9ca222e49c0ae4da40d639") | ||
}) | ||
|
||
print("Success!") | ||
} | ||
|
||
test_1.11 <- function() { | ||
test_that('Did not assign answer to an object called "breast_cancer_AUC_models"', { | ||
expect_true(exists("breast_cancer_AUC_models")) | ||
}) | ||
|
||
test_that("Solution should be a data frame", { | ||
expect_true("data.frame" %in% class(breast_cancer_AUC_models)) | ||
}) | ||
|
||
expected_colnames <- c("model", "auc") | ||
given_colnames <- colnames(breast_cancer_AUC_models) | ||
test_that("Data frame does not have the correct columns", { | ||
expect_equal(length(setdiff( | ||
union(expected_colnames, given_colnames), | ||
intersect(expected_colnames, given_colnames) | ||
)), 0) | ||
}) | ||
|
||
test_that("Data frame does not contain the correct number of rows", { | ||
expect_equal(digest(as.integer(nrow(breast_cancer_AUC_models))), "11946e7a3ed5e1776e81c0f0ecd383d0") | ||
}) | ||
|
||
test_that("Data frame does not contain the correct data", { | ||
expect_equal(digest(as.integer(sum(breast_cancer_AUC_models$auc) * 10e6)), "6ffe4702e283001ffa5f6625e55c30ed") | ||
}) | ||
|
||
print("Success!") | ||
} | ||
|
||
test_1.12 <- function() { | ||
test_that('Did not assign answer to an object called "ROC_lasso"', { | ||
expect_true(exists("ROC_lasso")) | ||
}) | ||
|
||
|
||
test_that("Data frame does not contain the correct data", { | ||
expect_equal(digest(as.integer(ROC_lasso$auc * 10e6)), "5521678a8e26ba545b30889d5438dc16") | ||
}) | ||
|
||
print("Success!") | ||
} |
Oops, something went wrong.