-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #31 from rissangs/main
Add fit_wine_quality_predict_model.py file
- Loading branch information
Showing
1 changed file
with
147 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
# author: UBC Master of Data Science - Group 33 | ||
# date: 2020-11-28 | ||
|
||
|
||
"""Model building and fitting the data. | ||
Usage: src/fit_wine_quality_predict_model.py --in_file_1=<in_file_1> --out_dir=<out_dir> | ||
Options: | ||
--in_file_1=<in_file_1> Path (including file name) to first raw data which is for red wine | ||
--out_dir=<out_dir> Path (excluding file name) of where to locally write the file | ||
""" | ||
|
||
from docopt import docopt | ||
import joblib | ||
import os | ||
import string | ||
from collections import deque | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
|
||
# data | ||
from sklearn import datasets | ||
from sklearn.compose import ColumnTransformer, make_column_transformer | ||
from sklearn.dummy import DummyClassifier, DummyRegressor | ||
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor | ||
from sklearn.feature_extraction.text import CountVectorizer | ||
|
||
# Feature selection | ||
from sklearn.feature_selection import RFE, RFECV | ||
from sklearn.impute import SimpleImputer | ||
|
||
# classifiers / models | ||
from sklearn.linear_model import RidgeClassifier | ||
from sklearn.linear_model import LogisticRegression | ||
|
||
# other | ||
from sklearn.metrics import accuracy_score, log_loss, make_scorer, mean_squared_error | ||
from sklearn.model_selection import ( | ||
GridSearchCV, | ||
RandomizedSearchCV, | ||
ShuffleSplit, | ||
cross_val_score, | ||
cross_validate, | ||
train_test_split, | ||
) | ||
from sklearn.pipeline import Pipeline, make_pipeline | ||
from sklearn.preprocessing import ( | ||
OneHotEncoder, | ||
OrdinalEncoder, | ||
PolynomialFeatures, | ||
StandardScaler, | ||
) | ||
from sklearn.neighbors import KNeighborsClassifier | ||
from sklearn.neural_network import MLPClassifier | ||
from sklearn.neighbors import NearestCentroid | ||
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis | ||
from sklearn.model_selection import cross_val_predict | ||
from sklearn.metrics import plot_precision_recall_curve, plot_roc_curve | ||
|
||
opt = docopt(__doc__) | ||
|
||
def store_cross_val_results(model_name, scores, results_dict): | ||
""" | ||
Stores mean scores from cross_validate in results_dict for | ||
the given model model_name. | ||
Parameters | ||
---------- | ||
model_name : | ||
scikit-learn classification model | ||
scores : dict | ||
object return by `cross_validate` | ||
results_dict: dict | ||
dictionary to store results | ||
Returns | ||
---------- | ||
None | ||
""" | ||
results_dict[model_name] = { | ||
"mean_fit_time": "{:0.4f}".format(np.mean(scores["fit_time"])), | ||
"mean_score_time": "{:0.4f}".format(np.mean(scores["score_time"])), | ||
"mean_test_f1 (s)": "{:0.4f}".format(np.mean(scores["test_f1_micro"])), | ||
"mean_train_f1 (s)": "{:0.4f}".format(np.mean(scores["train_f1_micro"])), | ||
"mean_test_accuracy (s)": "{:0.4f}".format(np.mean(scores["test_accuracy"])), | ||
"mean_train_accuracy (s)": "{:0.4f}".format(np.mean(scores["train_accuracy"])), | ||
} | ||
|
||
|
||
def main(in_file_1, out_dir): | ||
# read data and combine two data set vertically | ||
train_df = pd.read_csv(in_file_1) | ||
X_train = train_df.drop(columns = ['quality']) | ||
y_train = train_df['quality'] | ||
|
||
#----------------------------------------------------------------------------------------------------------------------------- | ||
#PreProcessor | ||
numeric_features = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', | ||
'chlorides', 'free sulfur dioxide','total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol'] | ||
binary_features = ['type'] | ||
|
||
numeric_transformer = make_pipeline(SimpleImputer(), StandardScaler()) | ||
binary_transformer = make_pipeline(OneHotEncoder(drop="if_binary", dtype=int)) | ||
|
||
preprocessor = ColumnTransformer( | ||
transformers = [ | ||
('num', numeric_transformer, numeric_features), | ||
('bin', binary_transformer, binary_features) | ||
] | ||
) | ||
#----------------------------------------------------------------------------------------------------------------------------- | ||
#Model picking | ||
results_df={} | ||
scoring ={'accuracy', 'f1_micro'} | ||
|
||
pipe_iter = make_pipeline(preprocessor, MLPClassifier(random_state=1, max_iter=300)) | ||
scores_iter = cross_validate(pipe_iter, X_train, y_train, | ||
return_train_score=True,scoring = scoring) | ||
store_cross_val_results(f"preprocessing + MLP", scores_iter, results_df) | ||
print(store_cross_val_results) | ||
|
||
#----------------------------------------------------------------------------------------------------------------------------- | ||
#Hyperparameters Tuning | ||
rf_pipeline = make_pipeline( | ||
preprocessor, MLPClassifier()) | ||
|
||
param_dist = { | ||
'mlpclassifier__hidden_layer_sizes': [(50,50,50), (50,100,50), (100,)], | ||
'mlpclassifier__activation': ['tanh', 'relu'], | ||
'mlpclassifier__solver': ['sgd', 'adam'], | ||
'mlpclassifier__alpha': [0.0001, 0.05], | ||
'mlpclassifier__learning_rate': ['constant','adaptive'], | ||
'mlpclassifier__max_iter': [300,500,450,200,300] | ||
} | ||
|
||
random_search = RandomizedSearchCV(rf_pipeline, param_distributions=param_dist, n_jobs=-1, n_iter=50, cv=5, scoring = 'f1_micro') | ||
random_search.fit(X_train, y_train) | ||
best_model_pipe = random_search.best_estimator_ | ||
|
||
joblib_file = out_dir + "best_Model.pkl" | ||
joblib.dump(best_model_pipe, joblib_file) | ||
|
||
|
||
if __name__ == "__main__": | ||
main(opt["--in_file_1"], opt["--out_dir"]) |