Skip to content

Commit

Permalink
feat: Added qdrant support for BaseEngine!
Browse files Browse the repository at this point in the history
  • Loading branch information
amindadgar committed May 16, 2024
1 parent 219c091 commit a8d7fb7
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 29 deletions.
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ neo4j>=5.14.1, <6.0.0
coverage>=7.3.3, <8.0.0
pytest>=7.4.3, <8.0.0
python-dotenv==1.0.0
tc-hivemind-backend==1.1.5
tc-hivemind-backend==1.2.0
llama-index-question-gen-guidance==0.1.2
llama-index-vector-stores-postgres==0.1.2
celery>=5.3.6, <6.0.0
Expand Down
43 changes: 15 additions & 28 deletions utils/query_engine/base_engine.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
from bot.retrievers.custom_retriever import CustomVectorStoreRetriever
from llama_index.core.indices.vector_store.retrievers.retriever import (
VectorIndexRetriever,
)
from bot.retrievers.utils.load_hyperparams import load_hyperparams
from llama_index.core import VectorStoreIndex, get_response_synthesizer
from llama_index.core.base.embeddings.base import BaseEmbedding
from llama_index.core.query_engine import RetrieverQueryEngine
from tc_hivemind_backend.embeddings import CohereEmbedding
from tc_hivemind_backend.pg_vector_access import PGVectorAccess
from tc_hivemind_backend.qdrant_vector_access import QDrantVectorAccess


class BaseEngine:
Expand All @@ -24,16 +24,17 @@ def __init__(self, platform_name: str, community_id: str) -> None:
"""
self.platform_name = platform_name
self.community_id = community_id
self.dbname = f"community_{self.community_id}"
self.collection_name = f"{self.community_id}_{platform_name}"

def prepare(self, testing=False):
index = self._setup_vector_store_index(
vector_store_index = self._setup_vector_store_index(
testing=testing,
)
_, similarity_top_k, _ = load_hyperparams()

retriever = CustomVectorStoreRetriever(
index=index, similarity_top_k=similarity_top_k
retriever = VectorIndexRetriever(
index=vector_store_index,
similarity_top_k=similarity_top_k,
)
query_engine = RetrieverQueryEngine(
retriever=retriever,
Expand All @@ -54,27 +55,13 @@ def _setup_vector_store_index(
testing : bool
for testing purposes
**kwargs :
table_name : str
to override the default table_name
dbname : str
to override the default database name
collection_name : str
to override the default collection_name
"""
table_name = kwargs.get("table_name", self.platform_name)
dbname = kwargs.get("dbname", self.dbname)

embed_model: BaseEmbedding
if testing:
from llama_index.core import MockEmbedding

embed_model = MockEmbedding(embed_dim=1024)
else:
embed_model = CohereEmbedding()

pg_vector = PGVectorAccess(
table_name=table_name,
dbname=dbname,
collection_name = kwargs.get("collection_name", self.collection_name)
qdrant_vector = QDrantVectorAccess(
collection_name=collection_name,
testing=testing,
embed_model=embed_model,
)
index = pg_vector.load_index()
index = qdrant_vector.load_index()
return index

0 comments on commit a8d7fb7

Please sign in to comment.