Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

another way to visualize NN weights #9

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Code/1_data_prepare/1_5_compute_mean.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
imgs = np.concatenate((imgs, img), axis=3)
print(i)

imgs = np.delete(imgs, 0, axis=3)
imgs = imgs.astype(np.float32)/255.


Expand Down
51 changes: 51 additions & 0 deletions Code/4_viewer/2_1_visual_weights.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# coding: utf-8
import torch
import torchvision.utils as vutils
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

# 定义权值初始化
def initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
torch.nn.init.normal_(m.weight.data, 0, 0.01)
m.bias.data.zero_()


net = Net() # 创建一个网络

kernels = net.conv1.weight.detach().clone()
kernels = kernels.view(-1, 1, 5, 5)
img = vutils.make_grid(kernels, normalize=True, scale_each=True, nrow=3)
plt.imshow(img.permute(1, 2, 0))
plt.axis('off')
plt.show()
56 changes: 56 additions & 0 deletions Code/4_viewer/3_1_visual_featuremaps.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# coding: utf-8
import torch
import torchvision.utils as vutils
import numpy as np
from tensorboardX import SummaryWriter
import torch.nn.functional as F
import torchvision.transforms as transforms
import sys
sys.path.append("..")
from utils.utils import MyDataset, Net, normalize_invert
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

vis_layer = 'conv1'
log_dir = '../../Result/visual_featuremaps'
txt_path = '../../Data/visual.txt'
pretrained_path = '../../Data/net_params_72p.pkl'

net = Net()
pretrained_dict = torch.load(pretrained_path)
net.load_state_dict(pretrained_dict)

# 数据预处理
normMean = [0.49139968, 0.48215827, 0.44653124]
normStd = [0.24703233, 0.24348505, 0.26158768]
normTransform = transforms.Normalize(normMean, normStd)
testTransform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
normTransform
])
# 载入数据
test_data = MyDataset(txt_path=txt_path, transform=testTransform)
test_loader = DataLoader(dataset=test_data, batch_size=1)
img, label = iter(test_loader).next()

x = img


# Visualize feature maps
features_dict = {}
def get_features(name):
def hook(model, input, output):
features_dict[name] = output.detach()
return hook


net.conv1.register_forward_hook(get_features('ext_conv1'))
output = net(x)

features = features_dict['ext_conv1'].view(-1, 1, 28, 28)

img = vutils.make_grid(features, normalize=True, scale_each=True, nrow=3)
plt.imshow(img.permute(1, 2, 0))
plt.axis('off')
plt.show()