This is a Fortran 90 program that allows one to read a molecule file (input.f90
, in this case, is the water molecule) and calculate and print all the thermodynamic information of the molecule. In the parameters.f90
there are the parameters of the main.
This script is part of my duty to accomplish the Theoretical Chemistry Exams at University of Florence in 2017.
To see the theory behind it, in the variae
folder there is the pdf thermo.pdf
written by Joseph W. Ochterski which explains the Thermochemistry in Gaussian program, from which my program is inspired. In the above mentioned folder there are also the files of the water optimization and frequency calcolation in Gaussian09 (water_opt_freq.gau
is the input, water_opt_freq.log
is the output).
In my case, since I used an Apple M1 chip, I download gfortran
compiler from the python anaconda
package management in a dedicated environment.
To install the gfortran
:
conda create --name Fortran python=3.10.13
conda activate Fortran
conda install -c conda-forge gfortran
To run the code you can use the MakeFile:
-
make compile
to compile the module and main script -
make run
to run the code -
make clean
to clean all the executable and compile fileHere below the comands run by the
MakeFile
:-
Compile the module file
gfortran -c parameters.f90
-
Compile the script
gfortran FortranThermoStats.f90 parameters.f90 -o FortranThermoStats.o
-
If needed, you have to allow the exectution of the script
chmod +x FortranThermoStats.o
-
Run the code:
./FortranThermoStats.o
-
The code:
program FortranThermoStats
use parameters
implicit none
real(8) :: x(n), y(n), z(n), freq(n), theta(n), fvib(n), theta_tot, fp_vib, Ain, Bin, Cin, Iin, &
fp_rot, mass(n), fp_tot, fp_el, fp_nuc, fp_trl, &
ix, iy, iz, ixz, ixy, iyz, Inerzia(3,3), Inerzia1(3,3), M, bx, by, bz, pi, ht, A, &
S_tot, S_vib, S_trl, S_rot, G, V, P, E_tot, E_vib, E_trl, E_rot, Cv, Cp, T, mol, &
E_totj, E_vibj, E_trlj, E_rotj, S_totj, S_vibj, S_trlj, S_rotj, E_vibs, E_vibsj, &
Cvr
character(2) :: nome(n)
integer :: k, i, nato, j, sig, sim, nmv
!---case where reading and printing to file is desired-------------------------------------------
open (unit = 1, file = 'risultati.dat', status = 'replace', action = 'write')
open (unit = 2, file = 'input.txt', status = 'old', action = 'read')
!-------------------------------------------------------------------------------------------
pi = acos(-1.d0)
ht = h/(2.d0*pi)
!---reading input data-------------------------------------------------------------------
read (2,*) !comment input
read (2,*) T
read (2,*) P
read (2,*) V
read (2,*) mol
read (2,*) nato
read (2,*) sim
read (2,*) sig
do i=1, nato
read (2,*) nome(i), x(i), y(i), z(i)
enddo
k=0
do
k= k+1
read(2,*,end=10) freq(k)
enddo
!---end of input-----------------------------------------------------------------------------
!----associating atom names with mass vector and calculating molecular mass M------------------
10 do i=1, nato
do j=1, 118
if (nome(i) == element(j)) then
mass(i) = weights(j)
endif
enddo
enddo
do i=1, nato
M= M + mass(i)
enddo
!-------------------------------------------------------------------------------------------
!Parameters for ideal gas law
if (P == 0) then
P = (mol * Av *kb * T) / (V * 101325)
endif
if (V == 0) then
V = (mol * Av *kb * T) / (P * 101325)
endif
if (mol == 0) then
mol = (P * V * 101325) / (Av *kb * T)
endif
!assigning normal vibrational modes
if (sim == 0) then
nmv = 3 * nato - 5
else if (sim == 1) then
nmv = 3 * nato - 6
endif
!---------------Inertia--------------------------------------------------------------
!calculating center of mass and changing reference frame
do i=1, nato
bx = bx + mass(i)*x(i)/M
by = by + mass(i)*y(i)/M
bz = bz + mass(i)*z(i)/M
enddo
x(i) = x(i) - bx
y(i) = y(i) - bx
z(i) = z(i) - bx
!constructing inertia tensor elements and diagonalizing
do i=1, nato
ix = ix + mass(i) * ((y(i)**2) + (z(i)**2))
iy = iy + mass(i) * ((z(i)**2) + (x(i)**2))
iz = iz + mass(i) * ((y(i)**2) + (x(i)**2))
ixz = ixz + mass(i) * x(i) * z(i)
ixy = ixy + mass(i) * x(i) * y(i)
iyz = iyz + mass(i) * y(i) * z(i)
enddo
Inerzia(1,1) = ix
Inerzia(1,2) = ixy
Inerzia(1,3) = ixz
Inerzia(2,1) = ixy
Inerzia(2,2) = iy
Inerzia(2,3) = iyz
Inerzia(3,1) = ixz
Inerzia(3,2) = iyz
Inerzia(3,3) = iz
call jacobi (Inerzia, Inerzia1, abserr, 3)
! principal axes of inertia in kg and meters from uma and angstrom
Ain = Inerzia(1,1) * 1.660539d-47
Bin = Inerzia(2,2) * 1.660539d-47
Cin = Inerzia(3,3) * 1.660539d-47
!---------------------------------------------------------------------------------------------------
!---Partition Function-----------------------------------------------------------------------------
!NOTE: vib= vibrational, trl=translational, el=electronic, nuc=nuclear, rot= rotational tot=total
!vibrational and vibrational temperatures
fp_vib = 1.d0
do k=1, nmv
theta(k) = freq(k) * c * 100* h / Kb
fvib(k) = 1 / (1 - exp(-theta(k) / T))
fp_vib = fp_vib * fvib(k)
theta_tot = theta_tot + theta(k)
enddo
!linear or non-linear rotational
if (sim == 0) then
I = Ain + Bin + Cin
fp_rot = 2 * T * I *kb / (sig * h**2)
else if (sim == 1) then
fp_rot = ( ( ( (2*kb*T) / ( (ht)**2) ) )**(1.5d0)) * ( (pi*Ain*Bin*Cin)**(0.5d0) ) /sig
endif
fp_trl = V / h**3 * (2 * pi * kb * T * M * 1.660539e-27)**(1.5d0) / Av
fp_el = 1
fp_nuc = 1
fp_tot = fp_vib + fp_rot + fp_el + fp_nuc + fp_trl
!----end Partition Function-----------------------------------------------------------------------
!----energy in classical thermodynamics--------------------------------------------------------------
!NOTE: suffix -j indicates joule/mol, without kcal/mol
!rotational energy for linear or non-linear molecule in joule/mol
if (sim == 0) then
E_rotj = (R * T) / mol
else if (sim == 1) then
E_rotj = (1.5d0 * R * T) / mol
endif
E_rot = E_rotj * 0.2388459 *0.001
E_trlj = (1.5d0 * R * T) /mol
E_trl = E_trlj * 0.2388459 *0.001
E_vibj = (R * T) / mol
E_vib = E_vibj * 0.2388459 * 0.001
E_totj = (E_vibj + E_rotj + E_trlj)
E_tot = (E_vib + E_rot + E_trl)
!---------------------------------------------------------------------------------------------------
!thermodynamic quantities
S_vibj = Av * kb * log(fp_vib) + E_vibj / T
S_vib = S_vibj * 0.2388459
S_rotj = Av * kb * log(fp_rot) + E_rotj / T
S_rot = S_rotj * 0.2388459
S_trlj = Av * kb * log(fp_trl) + E_trlj / T
S_trl = S_trlj * 0.2388459
S_tot = S_vib + S_rot + S_trl
S_totj = S_vibj + S_rotj + S_trlj
!calculating Cv
do i=1, nmv
Cv = Cv + R * (theta(i) / T)**2.d0 * exp(theta(i) / T ) / ( exp(theta(i) / T) - 1)**2.d0
enddo
Cvr = 1.5d0 * R
Cv = ( Cv + 1.5d0 * R + Cvr) * 0.2388459
!----Output Data---------------------------------------------------------------------------------
write (1,*) 'Temperature (K): ', T
write (1,*) 'System Volume (m^3): ', V
write (1,*) 'System Pressure (atm): ', P
write (1,*) 'System Moles: ', mol
write (1,*) 'Number of Atoms: ', nato
write (1,*) 'Number of Normal Modes: ', k-1
write (1,*) 'Molecule Symmetry Axes: ', sig
if (sim == 0) then
write (1,*) 'Molecule Symmetry: ', 'Linear'
else if (sim == 1) then
write (1,*) 'Molecule Symmetry: ', 'Nonlinear'
endif
if (k-1 /= nmv) then
write (*,*) 'ERROR: Number of normal vibrational modes different from read frequencies'
stop
endif
write (1,*) ' Energy (kcal*mol^-1) Energy (J*mol^-1) '
write (1,*) 'Vibrational Energy: ', E_vib, E_vibj
write (1,*) 'Rotational Energy: ', E_rot, E_rotj
write (1,*) 'Translational Energy: ', E_trl, E_trlj
write (1,*) 'Total System Energy: ', E_tot, E_totj
do i=1, nmv
write (1,*) 'Frequency (cm^-1):', freq(i), 'Vibrational Temperature (K):', theta(i)
enddo
do i=1, nato
write (1,*) 'Atom, Mass (u), and Coordinates (A):', nome(i), mass(i), x(i), y(i), z(i)
enddo
write (1,*) 'Molecule Mass (u):', M
write (1,*) 'Center of Mass (A):'
write (1,*) bx, by, bz
write (1,*) 'Inertia Tensor (u*A^2):'
write (1,*) Inerzia(1,1), Inerzia(1,2), Inerzia(1,3)
write (1,*) Inerzia(2,1), Inerzia(2,2), Inerzia(2,3)
write (1,*) Inerzia(3,1), Inerzia(3,2), Inerzia(3,3)
write (1,*) 'Principal Axes of Inertia (Kg*m^2)'
Write (1,*) Ain
Write (1,*) Bin
Write (1,*) Cin
write (1,*) 'Rotational Partition Function: ', fp_rot
write (1,*) 'Vibrational Partition Function: ', fp_vib
write (1,*) 'Translational Partition Function:', fp_trl
write (1,*) 'Electronic Partition Function: ', fp_el
write (1,*) 'Nuclear Partition Function: ', fp_nuc
write (1,*) 'Total Partition Function: ', fp_tot
write (1,*) ' Entropy (cal*mol^-1*K^-1) Entropy (J*mol^-1*K^-1)'
write (1,*) 'Vibrational Entropy: ', S_vib, S_vibj
write (1,*) 'Rotational Entropy: ', S_rot, S_rotj
write (1,*) 'Translational Entropy: ', S_trl, S_trlj
write (1,*) 'Total System Entropy: ', S_tot, S_totj
write (1,*) 'Cv:', Cv
end program FortranThermoStats
subroutine Jacobi(a,x,abserr,n)
!===========================================================
! Evaluate eigenvalues and eigenvectors
! of a real symmetric matrix a(n,n): a*x = lambda*x
! method: Jacoby method for symmetric matrices
! Alex G. (December 2009)
!-----------------------------------------------------------
! input ...
! a(n,n) - array of coefficients for matrix A
! n - number of equations
! abserr - abs tolerance [sum of (off-diagonal elements)^2]
! output ...
! a(i,i) - eigenvalues
! x(i,j) - eigenvectors
! comments ...
!===========================================================
implicit none
integer i, j, k
double precision b2, bar
double precision beta, coeff, c, s, cs, sc
real(8), intent(inout) :: a(n,n), x(n,n)
real(8), intent(in) :: abserr
integer, intent(in) :: n
x = 0.0
do i=1,n
x(i,i) = 1.0
end do
! find the sum of all off-diagonal elements (squared)
b2 = 0.0
do i=1,n
do j=1,n
if (i.ne.j) b2 = b2 + a(i,j)**2
end do
end do
if (b2 <= abserr) return
! average for off-diagonal elements /2
bar = 0.5*b2/float(n*n)
do while (b2.gt.abserr)
do i=1,n-1
do j=i+1,n
if (a(j,i)**2 <= bar) cycle ! do not touch small elements
b2 = b2 - 2.0*a(j,i)**2
bar = 0.5*b2/float(n*n)
! calculate coefficient c and s for Givens matrix
beta = (a(j,j)-a(i,i))/(2.0*a(j,i))
coeff = 0.5*beta/sqrt(1.0+beta**2)
s = sqrt(max(0.5+coeff,0.0))
c = sqrt(max(0.5-coeff,0.0))
! recalculate rows i and j
do k=1,n
cs = c*a(i,k)+s*a(j,k)
sc = -s*a(i,k)+c*a(j,k)
a(i,k) = cs
a(j,k) = sc
end do
! new matrix a_{k+1} from a_{k}, and eigenvectors
do k=1,n
cs = c*a(k,i)+s*a(k,j)
sc = -s*a(k,i)+c*a(k,j)
a(k,i) = cs
a(k,j) = sc
cs = c*x(k,i)+s*x(k,j)
sc = -s*x(k,i)+c*x(k,j)
x(k,i) = cs
x(k,j) = sc
end do
end do
end do
end do
return
end subroutine Jacobi