Skip to content

Latest commit

 

History

History

mstamp

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

mSTAMP

Citekey YehEtAl2016Matrix
Source Code stumpy
Learning type unsupervised
Input dimensionality multivariate

This approach uses the multidimensional matrix profile (mSTAMP). It generates an MP for every dimension and sums them up.

Output Format

The output will be an anomaly score for every input data point

Dependencies

  • python 3
  • numpy
  • pandas
  • stumpy

Notes

from timeeval.utils.window import ReverseWindowing
# post-processing for left_stampi
def post_mstamp(scores: np.ndarray, args: dict) -> np.ndarray:
    window_size = args.get("hyper_params", {}).get("anomaly_window_size", 50)
    return ReverseWindowing(window_size=window_size).fit_transform(scores)