Citekey | YehEtAl2016Matrix |
Source Code | stumpy |
Learning type | unsupervised |
Input dimensionality | multivariate |
This approach uses the multidimensional matrix profile (mSTAMP). It generates an MP for every dimension and sums them up.
The output will be an anomaly score for every input data point
- python 3
- numpy
- pandas
- stumpy
from timeeval.utils.window import ReverseWindowing
# post-processing for left_stampi
def post_mstamp(scores: np.ndarray, args: dict) -> np.ndarray:
window_size = args.get("hyper_params", {}).get("anomaly_window_size", 50)
return ReverseWindowing(window_size=window_size).fit_transform(scores)