Skip to content

Latest commit

 

History

History
34 lines (26 loc) · 802 Bytes

README.md

File metadata and controls

34 lines (26 loc) · 802 Bytes

mSTAMP

Citekey YehEtAl2016Matrix
Source Code stumpy
Learning type unsupervised
Input dimensionality multivariate

This approach uses the multidimensional matrix profile (mSTAMP). It generates an MP for every dimension and sums them up.

Output Format

The output will be an anomaly score for every input data point

Dependencies

  • python 3
  • numpy
  • pandas
  • stumpy

Notes

from timeeval.utils.window import ReverseWindowing
# post-processing for left_stampi
def post_mstamp(scores: np.ndarray, args: dict) -> np.ndarray:
    window_size = args.get("hyper_params", {}).get("anomaly_window_size", 50)
    return ReverseWindowing(window_size=window_size).fit_transform(scores)