forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add onnxruntime/test/run_benchmark.py helper script. (microsoft#19234)
### Description Add onnxruntime/test/run_benchmark.py helper script to repeat benchmark runs until a target coefficient of variance is reached. It works with [Google Benchmark](https://github.com/google/benchmark) programs like `onnxruntime_mlas_benchmark`. ### Motivation and Context Sometimes there is variability in benchmark run results. This automates the repeated running needed to get results that are stable enough.
- Loading branch information
Showing
2 changed files
with
222 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
from __future__ import annotations | ||
|
||
import argparse | ||
import dataclasses | ||
import json | ||
import pathlib | ||
import subprocess | ||
import sys | ||
import tempfile | ||
|
||
|
||
def warn(message: str): | ||
print(f"WARNING: {message}", file=sys.stderr) | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
description="Benchmark (https://github.com/google/benchmark) program runner. " | ||
"Runs a benchmark program until the benchmark measurements are within the desired coefficient of variation " | ||
"(CV) (stddev / mean) tolerance and outputs those measurements." | ||
) | ||
|
||
parser.add_argument( | ||
"--program", | ||
required=True, | ||
type=pathlib.Path, | ||
help="Path to the benchmark program to run.", | ||
) | ||
|
||
parser.add_argument( | ||
"--pattern", | ||
required=True, | ||
dest="patterns", | ||
action="extend", | ||
nargs="+", | ||
help="Benchmark test name pattern to specify which benchmark tests to run. " | ||
"Each pattern value will have its own invocation of the benchmark program (passed to the benchmark program " | ||
"with the --benchmark_filter option). " | ||
"To list the benchmark test names, run the benchmark program with the --benchmark_list_tests option.", | ||
) | ||
parser.add_argument( | ||
"--repetitions", | ||
type=int, | ||
default=10, | ||
help="Number of benchmark run repetitions (passed to the benchmark program with the " | ||
"--benchmark_repetitions option).", | ||
) | ||
|
||
parser.add_argument( | ||
"--max-cv", | ||
type=float, | ||
default=0.05, | ||
help="Maximum allowed CV (stddev / mean) value. " | ||
"The CV value is a number, not a percentage. E.g., a value of 0.05 corresponds to 5%%.", | ||
) | ||
parser.add_argument( | ||
"--max-attempts", | ||
type=int, | ||
default=3, | ||
help="Maximum number of times to attempt running the benchmark program.", | ||
) | ||
|
||
parser.add_argument( | ||
"--show-program-output", | ||
action="store_true", | ||
help="Display the output from the benchmark program.", | ||
) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
@dataclasses.dataclass | ||
class BenchmarkResult: | ||
name: str | ||
median_real_time: float | ||
median_cpu_time: float | ||
time_unit: str | ||
|
||
|
||
def run_benchmark( | ||
program: pathlib.Path, | ||
output_file: pathlib.Path, | ||
show_output: bool, | ||
pattern: str, | ||
repetitions: int, | ||
max_cv: float, | ||
max_attempts: int, | ||
) -> list[BenchmarkResult]: | ||
benchmark_cmd = [ | ||
f"{program}", | ||
f"--benchmark_filter={pattern}", | ||
f"--benchmark_repetitions={repetitions}", | ||
"--benchmark_report_aggregates_only", | ||
f"--benchmark_out={output_file}", | ||
"--benchmark_out_format=json", | ||
] | ||
|
||
def check_cv(entries): | ||
valid = True | ||
|
||
for entry in entries: | ||
if entry.get("aggregate_name") != "cv": | ||
continue | ||
|
||
run_name = entry["run_name"] | ||
|
||
real_time_cv = float(entry["real_time"]) | ||
if real_time_cv > max_cv: | ||
warn(f"real_time CV exceeds limit for run '{run_name}': {real_time_cv} > {max_cv}") | ||
valid = False | ||
|
||
cpu_time_cv = float(entry["cpu_time"]) | ||
if cpu_time_cv > max_cv: | ||
warn(f"cpu_time CV exceeds limit for run '{run_name}': {cpu_time_cv} > {max_cv}") | ||
valid = False | ||
|
||
return valid | ||
|
||
def process_entries(entries) -> list[BenchmarkResult]: | ||
results = [] | ||
|
||
for entry in entries: | ||
if entry.get("aggregate_name") != "median": | ||
continue | ||
|
||
result = BenchmarkResult( | ||
name=entry["run_name"], | ||
median_real_time=float(entry["real_time"]), | ||
median_cpu_time=float(entry["cpu_time"]), | ||
time_unit=entry["time_unit"], | ||
) | ||
|
||
results.append(result) | ||
|
||
return results | ||
|
||
attempts = 0 | ||
while attempts < max_attempts: | ||
attempts += 1 | ||
|
||
output_handle = None if show_output else subprocess.DEVNULL | ||
subprocess.run( | ||
benchmark_cmd, | ||
check=True, | ||
stdout=output_handle, | ||
stderr=output_handle, | ||
creationflags=subprocess.HIGH_PRIORITY_CLASS, | ||
) | ||
|
||
with open(output_file) as output: | ||
output_json = json.load(output) | ||
entries = output_json["benchmarks"] | ||
|
||
if not check_cv(entries): | ||
warn("Discarding benchmark run.") | ||
continue | ||
|
||
return process_entries(entries) | ||
|
||
raise RuntimeError("Failed to get measurements within the CV limit.") | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
|
||
program = args.program.resolve(strict=True) | ||
|
||
benchmark_results: list[BenchmarkResult] = [] | ||
|
||
with tempfile.TemporaryDirectory() as temp_dir_name: | ||
temp_dir = pathlib.Path(temp_dir_name) | ||
output_file = temp_dir / "benchmark.out.json" | ||
|
||
for pattern in args.patterns: | ||
benchmark_results += run_benchmark( | ||
program=program, | ||
output_file=output_file, | ||
show_output=args.show_program_output, | ||
pattern=pattern, | ||
repetitions=args.repetitions, | ||
max_cv=args.max_cv, | ||
max_attempts=args.max_attempts, | ||
) | ||
|
||
print("name|median_real_time|median_cpu_time") | ||
print("-|-|-") | ||
for result in benchmark_results: | ||
print( | ||
f"{result.name}|" | ||
f"{round(result.median_real_time)} {result.time_unit}|" | ||
f"{round(result.median_cpu_time)} {result.time_unit}" | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
# run_benchmark.py | ||
|
||
`run_benchmark.py` is a helper script that runs a [Google Benchmark](https://github.com/google/benchmark) program | ||
repeatedly until the measurements are within the desired | ||
[coefficient of variation](https://en.wikipedia.org/wiki/Coefficient_of_variation) and then outputs the measurements. | ||
|
||
It can be useful for obtaining measurements that are stable enough when repeated invocations of a benchmark program | ||
show some measurement variance across runs. | ||
|
||
Note that the script runs the benchmark program with specific options and parses specifically formatted output, so it | ||
is only expected to work with Google Benchmark programs. | ||
|
||
## Example usage | ||
|
||
To run a benchmark program and get measurements for benchmark test(s) with a particular name: | ||
|
||
``` | ||
python run_benchmark.py --program <path to benchmark program, e.g., onnxruntime_mlas_benchmark> --pattern <benchmark test name pattern> | ||
``` | ||
|
||
For more detailed usage information, run it with the `--help` option. |