The Implementation of "AutoNE: Hyperparameter Optimization for Massive Network Embedding"(KDD 2019).
- Python 3
$ pip3 install -r requirements.txt
Besides, this code relies on my submodule embeddding_test. Please use following command to download the code:
$ git clone --recursive [email protected]:tadpole/AutoNE.git
The Dataset can be downloaded from here.
You can change 'dataset', 'method', 'task', 'ms' variables in Makefile to select data and model.
dataset : [BlogCatalog | Wikipedia | pubmed]
method : [deepwalk | AROPE | gcn]
task : [link_predict | classification]
ms : [mle | random_search | b_opt]
$ make sample
$ make run
If you find this code useful, please cite our paper:
@inproceedings{tu2019autone,
title={AutoNE: Hyperparameter Optimization for Massive Network Embedding},
author={Tu, Ke and Ma, Jianxin and Cui, Peng and Pei, Jian and Zhu, Wenwu},
booktitle={Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
year={2019},
organization={ACM}
}