An unofficial pytorch implementation of "Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields" https://arxiv.org/abs/2304.06706. This work is based on multinerf, so features in refnerf,rawnerf,mipnerf360 are also available.
- (2024.2.2) Add support for nerfstudio, credits to Ling Jing.
- (2024.12.8) Add support for Intel's DPC++ backend, credits to Zong Wei.
- (2023.6.22) Add extracting mesh through tsdf; add gradient scaling for near plane floaters.
- (2023.5.26) Implement the latest version of ZipNeRF https://arxiv.org/abs/2304.06706.
- (2023.5.22) Add extracting mesh; add logging,checkpointing system
New results(5.27): Pretrained weights
360_v2:
360_v2_0527.mp4
360_v2_glo:(fewer floaters, but worse metric)
360_v2_glo.mp4
mesh results(5.27):
Mipnerf360(PSNR):
bicycle | garden | stump | room | counter | kitchen | bonsai | |
---|---|---|---|---|---|---|---|
Paper | 25.80 | 28.20 | 27.55 | 32.65 | 29.38 | 32.50 | 34.46 |
This repo | 25.44 | 27.98 | 26.75 | 32.13 | 29.10 | 32.63 | 34.20 |
Blender(PSNR):
chair | drums | ficus | hotdog | lego | materials | mic | ship | |
---|---|---|---|---|---|---|---|---|
Paper | 34.84 | 25.84 | 33.90 | 37.14 | 34.84 | 31.66 | 35.15 | 31.38 |
This repo | 35.26 | 25.51 | 32.66 | 36.56 | 35.04 | 29.43 | 34.93 | 31.38 |
For Mipnerf360 dataset, the model is trained with a downsample factor of 4 for outdoor scene and 2 for indoor scene(same as in paper). Training speed is about 1.5x slower than paper(1.5 hours on 8 A6000).
The hash decay loss seems to have little effect(?), as many floaters can be found in the final results in both experiments (especially in Blender).
# Clone the repo.
git clone https://github.com/SuLvXiangXin/zipnerf-pytorch.git
cd zipnerf-pytorch
# Make a conda environment.
conda create --name zipnerf python=3.9
conda activate zipnerf
# Install requirements.
pip install -r requirements.txt
# Install other cuda extensions
pip install ./extensions/cuda
# Install nvdiffrast (optional, for textured mesh)
git clone https://github.com/NVlabs/nvdiffrast
pip install ./nvdiffrast
# Install a specific cuda version of torch_scatter
# see more detail at https://github.com/rusty1s/pytorch_scatter
CUDA=cu117
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
# Install drivers, oneAPI and ipex for Intel GPUs
Following the steps in the below page to install gpu drivers, oneAPI BaseKit, and pytorch+ipex (abbr. intel-extension-for-pytorch):
https://intel.github.io/intel-extension-for-pytorch/xpu/1.13.120+xpu/tutorials/installation.html
For pytorch and Ipex versions, please install the version 1.13.120 with
python -m pip install torch==1.13.0a0+git6c9b55e intel_extension_for_pytorch==1.13.120+xpu -f https://developer.intel.com/ipex-whl-stable-xpu
After the installation is done, make sure it is successfully by running the example provided by
https://github.com/intel/intel-extension-for-pytorch/tree/release/xpu/1.13.120#inference-on-gpu
export DPCPP_HOME=path/to/llvm # path to the folder for llvm, default value:~
bash scripts/set_dpcpp_env.sh intel # for intel's gpu
bash scripts/set_dpcpp_env.sh nvidia # for nvidia's gpu
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda
mkdir data
cd data
# e.g. mipnerf360 data
wget http://storage.googleapis.com/gresearch/refraw360/360_v2.zip
unzip 360_v2.zip
# Configure your training (DDP? fp16? ...)
# see https://huggingface.co/docs/accelerate/index for details
accelerate config
# Where your data is
DATA_DIR=data/360_v2/bicycle
EXP_NAME=360_v2/bicycle
# Experiment will be conducted under "exp/${EXP_NAME}" folder
# "--gin_configs=configs/360.gin" can be seen as a default config
# and you can add specific config useing --gin_bindings="..."
accelerate launch train.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# or you can also run without accelerate (without DDP)
CUDA_VISIBLE_DEVICES=0 python train.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example training script
bash scripts/train_360.sh
# blender dataset
bash scripts/train_blender.sh
# metric, render image, etc can be viewed through tensorboard
tensorboard --logdir "exp/${EXP_NAME}"
# add config in command line
--gin_bindings="Config.dpcpp_backend = True" \
Rendering results can be found in the directory exp/${EXP_NAME}/render
accelerate launch render.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.render_path = True" \
--gin_bindings="Config.render_path_frames = 480" \
--gin_bindings="Config.render_video_fps = 60" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example rendering script
bash scripts/render_360.sh
Evaluating results can be found in the directory exp/${EXP_NAME}/test_preds
# using the same exp_name as in training
accelerate launch eval.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example evaluating script
bash scripts/eval_360.sh
https://github.com/nerfstudio-project/nerfstudio
Nerfstudio provides a simple API that allows for a simplified end-to-end process of creating, training, and testing NeRFs. The library supports a more interpretable implementation of NeRFs by modularizing each component.
You can use the viewer provided by nerfstudio to view the render results during the training process.
pip install nerfstudio
# cd zipnerf-pytorch
pip install -e .
ns-install-cli
ns-train zipnerf --data {DATA_DIR/SCENE}
ns-eval --load-config {outputs/SCENE/zipnerf/EXP_DIR/config.yml}
ns-train zipnerf -h # show the full list of model configuration options.
ns-train zipnerf colmap -h # dataparset configuration options
*Nerfstudio's ColmapDataParser rounds down the image size when downscaling, which is different from the 360_v2 dataset.You can use nerfstudio to reprocess the data or modify the code logic for downscale in the library as dicussed in nerfstudio-project/nerfstudio#1438.
*Nerfstudio's train/eval division strategy is different from this repo. Final training and evaluation results may vary.
For more usage or information, please see https://github.com/nerfstudio-project/nerfstudio.
You can create a new .gin file and pass in the 'gin_file' list in ZipNerfModelConfig of zipnerf_ns/zipnerf_config.py or update the contents of the default .gin file.
ns-train zipnerf -h
ns-train zipnerf colmap -h
You can modify zipnerf_ns/zipnerf_config.py, or use the instruction.
Given a pretrained model checkpoint, you can start the viewer by running
ns-viewer --load-config outputs/SCENE/zipnerf/EXP_TIME/config.yml
If you are running on a remote machine, you will need to port forward the websocket port (defaults to 7007). SSH must be set up on the remote machine. Then run the following on this machine:
ssh -L <port>:localhost:<port> [email protected]
Mesh results can be found in the directory exp/${EXP_NAME}/mesh
# more configuration can be found in internal/configs.py
accelerate launch extract.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# --gin_bindings="Config.mesh_radius = 1" # (optional) smaller for more details e.g. 0.2 in bicycle scene
# --gin_bindings="Config.isosurface_threshold = 20" # (optional) empirical value
# --gin_bindings="Config.mesh_voxels=134217728" # (optional) number of voxels used to extract mesh, e.g. 134217728 equals to 512**3 . Smaller values may solve OutoFMemoryError
# --gin_bindings="Config.vertex_color = True" # (optional) saving mesh with vertex color instead of atlas which is much slower but with more details.
# --gin_bindings="Config.vertex_projection = True" # (optional) use projection for vertex color
# or extracting mesh using tsdf method
accelerate launch tsdf.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example script
bash scripts/extract_360.sh
you can decrease the total batch size by
adding e.g. --gin_bindings="Config.batch_size = 8192"
,
or decrease the test chunk size by adding e.g. --gin_bindings="Config.render_chunk_size = 8192"
,
or use more GPU by configure accelerate config
.
More details can be found at https://github.com/google-research/multinerf
DATA_DIR=my_dataset_dir
bash scripts/local_colmap_and_resize.sh ${DATA_DIR}
- Add MultiScale training and testing
@misc{barron2023zipnerf,
title={Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields},
author={Jonathan T. Barron and Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman},
year={2023},
eprint={2304.06706},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{multinerf2022,
title={{MultiNeRF}: {A} {Code} {Release} for {Mip-NeRF} 360, {Ref-NeRF}, and {RawNeRF}},
author={Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman and Ricardo Martin-Brualla and Jonathan T. Barron},
year={2022},
url={https://github.com/google-research/multinerf},
}
@Misc{accelerate,
title = {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
author = {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar},
howpublished = {\url{https://github.com/huggingface/accelerate}},
year = {2022}
}
@misc{torch-ngp,
Author = {Jiaxiang Tang},
Year = {2022},
Note = {https://github.com/ashawkey/torch-ngp},
Title = {Torch-ngp: a PyTorch implementation of instant-ngp}
}
This work is based on my another repo https://github.com/SuLvXiangXin/multinerf-pytorch, which is basically a pytorch translation from multinerf
- Thanks to multinerf for amazing multinerf(MipNeRF360,RefNeRF,RawNeRF) implementation
- Thanks to accelerate for distributed training
- Thanks to torch-ngp for super useful hashencoder
- Thanks to Yurui Chen for discussing the details of the paper.