Skip to content

Commit

Permalink
Update M5-epidemiology.Rmd
Browse files Browse the repository at this point in the history
  • Loading branch information
huangyh09 committed Nov 6, 2023
1 parent 20e0914 commit 2d86b78
Showing 1 changed file with 13 additions and 13 deletions.
26 changes: 13 additions & 13 deletions notebooks/module5-epidemi/M5-epidemiology.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@

*by Dr Jason Wong*

*Date: 16-11-2022 (Updated 21-11-2022)*
*Date: 6-11-2023*

[The RMarkdown notebook to run your own code can be downloaded here](https://github.com/StatBiomed/BMDS-book/raw/main/notebooks/module5-epidemi/M5-epidemiology.Rmd)

Expand Down Expand Up @@ -451,39 +451,39 @@ hist(pubmed$Publication.Year)

<!-- #Create a vector containing only the text -->
<!-- gtext <- HMRF$Project.Title -->
<!-- # Create a corpus -->
<!-- # Create a corpus -->
<!-- gdocs <- Corpus(VectorSource(gtext)) -->
<!-- gdocs <- gdocs %>% -->
<!-- tm_map(removePunctuation) %>% -->
<!-- tm_map(stripWhitespace) -->
<!-- gdocs <- tm_map(gdocs, content_transformer(tolower)) -->
<!-- gdocs <- tm_map(gdocs, removeWords, stopwords("english")) -->

<!-- gdtm <- TermDocumentMatrix(gdocs) -->
<!-- gmatrix <- as.matrix(gdtm) -->
<!-- gwords <- sort(rowSums(gmatrix),decreasing=TRUE) -->
<!-- gdtm <- TermDocumentMatrix(gdocs) -->
<!-- gmatrix <- as.matrix(gdtm) -->
<!-- gwords <- sort(rowSums(gmatrix),decreasing=TRUE) -->
<!-- gdf <- data.frame(word = names(gwords),freq=gwords) -->

<!-- set.seed(1235) # for reproducibility -->
<!-- set.seed(1235) # for reproducibility -->
<!-- gp<-ggwordcloud(words = gdf$word, freq = gdf$freq, min.freq = 1,max.words=200, random.order=FALSE, rot.per=0.35, colors=brewer.pal(8, "Dark2")) -->
<!-- #gp -->

<!-- #Create a vector containing only the text -->
<!-- pmtext <- pubmed$Title -->
<!-- # Create a corpus -->
<!-- # Create a corpus -->
<!-- pmdocs <- Corpus(VectorSource(pmtext)) -->
<!-- pmdocs <- pmdocs %>% -->
<!-- tm_map(removePunctuation) %>% -->
<!-- tm_map(stripWhitespace) -->
<!-- pmdocs <- tm_map(pmdocs, content_transformer(tolower)) -->
<!-- pmdocs <- tm_map(pmdocs, removeWords, stopwords("english")) -->

<!-- pmdtm <- TermDocumentMatrix(pmdocs) -->
<!-- pmmatrix <- as.matrix(pmdtm) -->
<!-- pmwords <- sort(rowSums(pmmatrix),decreasing=TRUE) -->
<!-- pmdtm <- TermDocumentMatrix(pmdocs) -->
<!-- pmmatrix <- as.matrix(pmdtm) -->
<!-- pmwords <- sort(rowSums(pmmatrix),decreasing=TRUE) -->
<!-- pmdf <- data.frame(word = names(pmwords),freq=pmwords) -->

<!-- set.seed(1235) # for reproducibility -->
<!-- set.seed(1235) # for reproducibility -->
<!-- pm<-ggwordcloud(words = pmdf$word, freq = pmdf$freq, min.freq = 1,max.words=200, random.order=FALSE, rot.per=0.35, colors=brewer.pal(8, "Dark2")) -->
<!-- grid.arrange(arrangeGrob(pm, top = 'Pubmed'),arrangeGrob(gp, top = 'Grants'),nrow=2,heights=c(6,6)) -->

Expand Down Expand Up @@ -528,6 +528,6 @@ grid.arrange(gp,ginc,gmor,pinc, pmor, ncol=3)
```

## 5. Task (to be completed in Tutotial 2 by 3:00pm and shared with other tutorial group)
## 5. Open disucssion

As a group, discuss what cancer type you think is most worthy of funding in Hong Kong. Prepare 2-3 PowerPoint/Google Slides summarising your decision. Include some points and figures supporting your final conclusion. If possible also include suggestions of what other data/analyses can be performed and/or other cancer types that are also in need of funding in Hong Kong.
As a group discuss what cancer type would be most worthy of funding in Hong Kong. Statistics and figures should be used to support your decision. If possible also discuss other data/analyses that can be performed and/or other diseases that are also in need of funding in Hong Kong.

0 comments on commit 2d86b78

Please sign in to comment.