-
Notifications
You must be signed in to change notification settings - Fork 191
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2952 from NinelK/sinaps
Add extractors for SiNAPS Research Platform
- Loading branch information
Showing
2 changed files
with
268 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
261 changes: 261 additions & 0 deletions
261
src/spikeinterface/extractors/sinapsrecordingextractors.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
from __future__ import annotations | ||
|
||
import warnings | ||
from pathlib import Path | ||
import numpy as np | ||
|
||
from probeinterface import get_probe | ||
|
||
from ..core import BaseRecording, BaseRecordingSegment, BinaryRecordingExtractor, ChannelSliceRecording | ||
from ..core.core_tools import define_function_from_class | ||
|
||
|
||
class SinapsResearchPlatformRecordingExtractor(ChannelSliceRecording): | ||
""" | ||
Recording extractor for the SiNAPS research platform system saved in binary format. | ||
Parameters | ||
---------- | ||
file_path : str | Path | ||
Path to the SiNAPS .bin file. | ||
stream_name : "filt" | "raw" | "aux", default: "filt" | ||
The stream name to extract. | ||
"filt" extracts the filtered data, "raw" extracts the raw data, and "aux" extracts the auxiliary data. | ||
""" | ||
|
||
extractor_name = "SinapsResearchPlatform" | ||
mode = "file" | ||
name = "sinaps_research_platform" | ||
|
||
def __init__(self, file_path: str | Path, stream_name: str = "filt"): | ||
from ..preprocessing import UnsignedToSignedRecording | ||
|
||
file_path = Path(file_path) | ||
meta_file = file_path.parent / f"metadata_{file_path.stem}.txt" | ||
meta = parse_sinaps_meta(meta_file) | ||
|
||
num_aux_channels = meta["nbHWAux"] + meta["numberUserAUX"] | ||
num_total_channels = 2 * meta["nbElectrodes"] + num_aux_channels | ||
num_electrodes = meta["nbElectrodes"] | ||
sampling_frequency = meta["samplingFreq"] | ||
|
||
probe_type = meta["probeType"] | ||
num_bits = int(np.log2(meta["nbADCLevels"])) | ||
|
||
gain_ephys = meta["voltageConverter"] | ||
gain_aux = meta["voltageAUXConverter"] | ||
|
||
recording = BinaryRecordingExtractor( | ||
file_path, sampling_frequency, dtype="uint16", num_channels=num_total_channels | ||
) | ||
recording = UnsignedToSignedRecording(recording, bit_depth=num_bits) | ||
|
||
if stream_name == "raw": | ||
channel_slice = recording.channel_ids[:num_electrodes] | ||
renamed_channels = np.arange(num_electrodes) | ||
gain = gain_ephys | ||
elif stream_name == "filt": | ||
channel_slice = recording.channel_ids[num_electrodes : 2 * num_electrodes] | ||
renamed_channels = np.arange(num_electrodes) | ||
gain = gain_ephys | ||
elif stream_name == "aux": | ||
channel_slice = recording.channel_ids[2 * num_electrodes :] | ||
hw_chans = meta["hwAUXChannelName"][1:-1].split(",") | ||
user_chans = meta["userAuxName"][1:-1].split(",") | ||
renamed_channels = hw_chans + user_chans | ||
gain = gain_aux | ||
else: | ||
raise ValueError("stream_name must be 'raw', 'filt', or 'aux'") | ||
|
||
ChannelSliceRecording.__init__(self, recording, channel_ids=channel_slice, renamed_channel_ids=renamed_channels) | ||
|
||
self.set_channel_gains(gain) | ||
self.set_channel_offsets(0) | ||
num_channels = self.get_num_channels() | ||
|
||
if (stream_name == "filt") | (stream_name == "raw"): | ||
probe = get_sinaps_probe(probe_type, num_channels) | ||
if probe is not None: | ||
self.set_probe(probe, in_place=True) | ||
|
||
self._kwargs = {"file_path": str(file_path.absolute()), "stream_name": stream_name} | ||
|
||
|
||
class SinapsResearchPlatformH5RecordingExtractor(BaseRecording): | ||
""" | ||
Recording extractor for the SiNAPS research platform system saved in HDF5 format. | ||
Parameters | ||
---------- | ||
file_path : str | Path | ||
Path to the SiNAPS .h5 file. | ||
""" | ||
|
||
extractor_name = "SinapsResearchPlatformH5" | ||
mode = "file" | ||
name = "sinaps_research_platform_h5" | ||
|
||
def __init__(self, file_path: str | Path): | ||
self._file_path = file_path | ||
|
||
sinaps_info = parse_sinapse_h5(self._file_path) | ||
self._rf = sinaps_info["filehandle"] | ||
|
||
BaseRecording.__init__( | ||
self, | ||
sampling_frequency=sinaps_info["sampling_frequency"], | ||
channel_ids=sinaps_info["channel_ids"], | ||
dtype=sinaps_info["dtype"], | ||
) | ||
|
||
self.extra_requirements.append("h5py") | ||
|
||
recording_segment = SiNAPSH5RecordingSegment( | ||
self._rf, | ||
sinaps_info["num_frames"], | ||
sampling_frequency=sinaps_info["sampling_frequency"], | ||
num_bits=sinaps_info["num_bits"], | ||
) | ||
self.add_recording_segment(recording_segment) | ||
|
||
# set gain | ||
self.set_channel_gains(sinaps_info["gain"]) | ||
self.set_channel_offsets(sinaps_info["offset"]) | ||
self.num_bits = sinaps_info["num_bits"] | ||
num_channels = self.get_num_channels() | ||
|
||
# set probe | ||
probe = get_sinaps_probe(sinaps_info["probe_type"], num_channels) | ||
if probe is not None: | ||
self.set_probe(probe, in_place=True) | ||
|
||
self._kwargs = {"file_path": str(Path(file_path).absolute())} | ||
|
||
def __del__(self): | ||
self._rf.close() | ||
|
||
|
||
class SiNAPSH5RecordingSegment(BaseRecordingSegment): | ||
def __init__(self, rf, num_frames, sampling_frequency, num_bits): | ||
BaseRecordingSegment.__init__(self, sampling_frequency=sampling_frequency) | ||
self._rf = rf | ||
self._num_samples = int(num_frames) | ||
self._num_bits = num_bits | ||
self._stream = self._rf.require_group("RealTimeProcessedData") | ||
|
||
def get_num_samples(self): | ||
return self._num_samples | ||
|
||
def get_traces(self, start_frame=None, end_frame=None, channel_indices=None): | ||
if isinstance(channel_indices, slice): | ||
traces = self._stream.get("FilteredData")[channel_indices, start_frame:end_frame].T | ||
else: | ||
# channel_indices is np.ndarray | ||
if np.array(channel_indices).size > 1 and np.any(np.diff(channel_indices) < 0): | ||
# get around h5py constraint that it does not allow datasets | ||
# to be indexed out of order | ||
sorted_channel_indices = np.sort(channel_indices) | ||
resorted_indices = np.array([list(sorted_channel_indices).index(ch) for ch in channel_indices]) | ||
recordings = self._stream.get("FilteredData")[sorted_channel_indices, start_frame:end_frame].T | ||
traces = recordings[:, resorted_indices] | ||
else: | ||
traces = self._stream.get("FilteredData")[channel_indices, start_frame:end_frame].T | ||
# convert uint16 to int16 here to simplify extractor | ||
if traces.dtype == "uint16": | ||
dtype_signed = "int16" | ||
# upcast to int with double itemsize | ||
signed_dtype = "int32" | ||
offset = 2 ** (self._num_bits - 1) | ||
traces = traces.astype(signed_dtype, copy=False) - offset | ||
traces = traces.astype(dtype_signed, copy=False) | ||
return traces | ||
|
||
|
||
read_sinaps_research_platform = define_function_from_class( | ||
source_class=SinapsResearchPlatformRecordingExtractor, name="read_sinaps_research_platform" | ||
) | ||
|
||
read_sinaps_research_platform_h5 = define_function_from_class( | ||
source_class=SinapsResearchPlatformH5RecordingExtractor, name="read_sinaps_research_platform_h5" | ||
) | ||
|
||
|
||
############################################## | ||
# HELPER FUNCTIONS | ||
############################################## | ||
|
||
|
||
def get_sinaps_probe(probe_type, num_channels): | ||
try: | ||
probe = get_probe(manufacturer="sinaps", probe_name=f"SiNAPS-{probe_type}") | ||
# now wire the probe | ||
channel_indices = np.arange(num_channels) | ||
probe.set_device_channel_indices(channel_indices) | ||
return probe | ||
except: | ||
warnings.warn(f"Could not load probe information for {probe_type}") | ||
return None | ||
|
||
|
||
def parse_sinaps_meta(meta_file): | ||
meta_dict = {} | ||
with open(meta_file) as f: | ||
lines = f.readlines() | ||
for l in lines: | ||
if "**" in l or "=" not in l: | ||
continue | ||
else: | ||
key, val = l.split("=") | ||
val = val.replace("\n", "") | ||
try: | ||
val = int(val) | ||
except: | ||
pass | ||
try: | ||
val = eval(val) | ||
except: | ||
pass | ||
meta_dict[key] = val | ||
return meta_dict | ||
|
||
|
||
def parse_sinapse_h5(filename): | ||
"""Open an SiNAPS hdf5 file, read and return the recording info.""" | ||
|
||
import h5py | ||
|
||
rf = h5py.File(filename, "r") | ||
|
||
stream = rf.require_group("RealTimeProcessedData") | ||
data = stream.get("FilteredData") | ||
dtype = data.dtype | ||
|
||
parameters = rf.require_group("Parameters") | ||
gain = parameters.get("VoltageConverter")[0] | ||
offset = 0 | ||
|
||
nRecCh, nFrames = data.shape | ||
|
||
samplingRate = parameters.get("SamplingFrequency")[0] | ||
|
||
probe_type = str( | ||
rf.require_group("Advanced Recording Parameters").require_group("Probe").get("probeType").asstr()[...] | ||
) | ||
num_bits = int( | ||
np.log2(rf.require_group("Advanced Recording Parameters").require_group("DAQ").get("nbADCLevels")[0]) | ||
) | ||
|
||
sinaps_info = { | ||
"filehandle": rf, | ||
"num_frames": nFrames, | ||
"sampling_frequency": samplingRate, | ||
"num_channels": nRecCh, | ||
"channel_ids": np.arange(nRecCh), | ||
"gain": gain, | ||
"offset": offset, | ||
"dtype": dtype, | ||
"probe_type": probe_type, | ||
"num_bits": num_bits, | ||
} | ||
|
||
return sinaps_info |