-
Notifications
You must be signed in to change notification settings - Fork 190
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
173 additions
and
0 deletions.
There are no files selected for viewing
173 changes: 173 additions & 0 deletions
173
src/spikeinterface/sortingcomponents/matching/kilosort.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
"""Sorting components: template matching.""" | ||
|
||
from __future__ import annotations | ||
|
||
|
||
import numpy as np | ||
|
||
from .base import BaseTemplateMatching, _base_matching_dtype | ||
|
||
try: | ||
import torch | ||
|
||
HAVE_TORCH = True | ||
from torch.nn.functional import conv1d, max_pool2d, max_pool1d | ||
except ImportError: | ||
HAVE_TORCH = False | ||
|
||
|
||
spike_dtype = [ | ||
("sample_index", "int64"), | ||
("channel_index", "int64"), | ||
("cluster_index", "int64"), | ||
("amplitude", "float64"), | ||
("segment_index", "int64"), | ||
] | ||
|
||
|
||
class KiloSortPeeler(BaseTemplateMatching): | ||
|
||
def __init__( | ||
self, | ||
recording, | ||
return_output=True, | ||
parents=None, | ||
templates=None, | ||
temporal_components=None, | ||
spatial_components=None, | ||
Th=8, | ||
max_iter=100, | ||
engine="torch", | ||
torch_device="cpu", | ||
): | ||
|
||
import scipy | ||
|
||
BaseTemplateMatching.__init__(self, recording, templates, return_output=True, parents=None) | ||
self.templates_array = self.templates.get_dense_templates() | ||
self.spatial_components = spatial_components | ||
self.temporal_components = temporal_components | ||
self.Th = Th | ||
self.max_iter = max_iter | ||
self.engine = "torch" | ||
self.torch_device = torch_device | ||
|
||
self.num_components = len(self.temporal_components) | ||
self.num_templates = len(self.templates_array) | ||
self.num_channels = recording.get_num_channels() | ||
self.num_samples = self.templates_array.shape[1] | ||
|
||
U = np.zeros((self.num_templates, self.num_channels, self.num_components), dtype=np.float32) | ||
for i in range(self.num_templates): | ||
U[i] = np.dot(spatial_components, self.templates_array[i]).T | ||
|
||
Uex = np.einsum("xyz, zt -> xty", U, self.spatial_components) | ||
if self.engine == "torch": | ||
Uex = torch.as_tensor(Uex, device=self.torch_device) | ||
temporal_components_torch = torch.as_tensor(temporal_components, device=self.torch_device) | ||
X = Uex.reshape(-1, self.num_channels).T | ||
X = conv1d(X.unsqueeze(1), temporal_components_torch.unsqueeze(1), padding=self.num_samples // 2) | ||
X = X[:, :, : self.num_templates * self.num_samples] | ||
Xmax = X.abs().max(0)[0].max(0)[0].reshape(-1, self.num_samples) | ||
imax = torch.argmax(Xmax, 1) | ||
Unew_torch = Uex.clone() | ||
for j in range(self.num_samples): | ||
ix = imax == j | ||
Unew_torch[ix] = torch.roll(Unew_torch[ix], self.num_samples // 2 - j, -2) | ||
self.U = torch.einsum( | ||
"xty, zt -> xzy", Unew_torch, torch.as_tensor(spatial_components, device=self.torch_device) | ||
) | ||
self.W = torch.as_tensor(self.spatial_components, device=self.torch_device) | ||
WtW = conv1d( | ||
self.W.reshape(-1, 1, self.num_samples), | ||
self.W.reshape(-1, 1, self.num_samples), | ||
padding=self.num_samples, | ||
) | ||
WtW = torch.flip( | ||
WtW, | ||
[ | ||
2, | ||
], | ||
) | ||
UtU = torch.einsum("ikl, jml -> ijkm", self.U, self.U) | ||
self.ctc = torch.einsum("ijkm, kml -> ijl", UtU, WtW) | ||
self.trange = torch.arange(-self.num_samples, self.num_samples + 1, device=self.torch_device) | ||
else: | ||
X = Uex.reshape(-1, self.num_channels).T | ||
X = scipy.signal.oaconvolve(X[:, None, :], self.temporal_components[None, :, ::-1], mode="full", axes=2) | ||
X = X[:, :, self.num_samples // 2 : self.num_samples // 2 + self.num_samples * self.num_templates] | ||
Xmax = np.abs(X).max(0).max(0).reshape(-1, self.num_samples) | ||
imax = np.argmax(Xmax, 1) | ||
Unew = Uex.copy() | ||
for j in range(self.num_samples): | ||
ix = imax == j | ||
Unew[ix] = np.roll(Unew[ix], self.num_samples // 2 - j, -2) | ||
|
||
self.U = np.einsum("xty, zt -> xzy", Unew, spatial_components) | ||
self.W = self.spatial_components | ||
WtW = scipy.signal.oaconvolve(self.W[None, :, ::-1], self.W[:, None, :], mode="full", axes=2) | ||
WtW = np.flip(WtW, 2) | ||
UtU = np.einsum("ikl, jml -> ijkm", self.U, self.U) | ||
self.ctc = np.einsum("ijkm, kml -> ijl", UtU, WtW) | ||
self.trange = np.arange(-self.num_samples, self.num_samples + 1, device=self.torch_device) | ||
|
||
self.nbefore = self.templates.nbefore | ||
self.nafter = self.templates.nafter | ||
self.margin = self.num_samples | ||
self.nm = (self.U**2).sum(-1).sum(-1) | ||
|
||
def get_trace_margin(self): | ||
return self.margin | ||
|
||
def compute_matching(self, traces, start_frame, end_frame, segment_index): | ||
|
||
if self.engine == "torch": | ||
X = torch.as_tensor(traces.T, device=self.torch_device) | ||
B = conv1d(X.unsqueeze(1), self.W.unsqueeze(1), padding=self.num_samples // 2) | ||
B = torch.einsum("ijk, kjl -> il", self.U, B) | ||
|
||
spikes = np.empty(traces.size, dtype=spike_dtype) | ||
k = 0 | ||
|
||
for t in range(self.max_iter): | ||
Cf = torch.relu(B) ** 2 / self.nm.unsqueeze(-1) | ||
Cf[:, : self.margin] = 0 | ||
Cf[:, -self.margin :] = 0 | ||
|
||
Cfmax, imax = torch.max(Cf, 0) | ||
Cmax = max_pool1d( | ||
Cfmax.unsqueeze(0).unsqueeze(0), (2 * self.num_samples + 1), stride=1, padding=(self.num_samples) | ||
) | ||
cnd1 = Cmax[0, 0] > self.Th**2 | ||
cnd2 = torch.abs(Cmax[0, 0] - Cfmax) < 1e-9 | ||
xs = torch.nonzero(cnd1 * cnd2) | ||
|
||
if len(xs) == 0: | ||
break | ||
|
||
iX = xs[:, :1] | ||
iY = imax[iX] | ||
|
||
nsp = len(iX) | ||
spikes[k : k + nsp]["sample_index"] = iX[:, 0].cpu() | ||
spikes[k : k + nsp]["cluster_index"] = iY[:, 0].cpu() | ||
amp = B[iY, iX] / self.nm[iY] | ||
|
||
n = 2 | ||
for j in range(n): | ||
B[:, iX[j::n] + self.trange] -= amp[j::n] * self.ctc[:, iY[j::n, 0], :] | ||
|
||
spikes[k : k + nsp]["amplitude"] = amp[:, 0].cpu() | ||
k += nsp | ||
|
||
spikes = spikes[:k] | ||
spikes["channel_index"] = 0 | ||
spikes["sample_index"] += (self.nbefore - self.nafter) // 2 | ||
order = np.argsort(spikes["sample_index"]) | ||
spikes = spikes[order] | ||
|
||
else: | ||
B = scipy.signal.oaconvolve(traces.T[np.newaxis, :, :], self.W[:, None, ::-1], mode="full", axes=2) | ||
B = np.einsum("ijk, kjl -> il", self.U, B) | ||
|
||
return spikes |