Skip to content

Commit

Permalink
[pre-commit.ci] auto fixes from pre-commit.com hooks
Browse files Browse the repository at this point in the history
for more information, see https://pre-commit.ci
  • Loading branch information
pre-commit-ci[bot] committed May 3, 2024
1 parent c7c8339 commit 98c1dd4
Showing 1 changed file with 17 additions and 17 deletions.
34 changes: 17 additions & 17 deletions doc/get_started/quickstart.rst
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ both a “recording” and a “sorting” object.
.. parsed-literal::
MEArecRecordingExtractor: 32 channels - 32.0kHz - 1 segments - 320,000 samples - 10.00s
MEArecRecordingExtractor: 32 channels - 32.0kHz - 1 segments - 320,000 samples - 10.00s
float32 dtype - 39.06 MiB
file_path: /home/nolanlab/spikeinterface_datasets/ephy_testing_data/mearec/mearec_test_10s.h5
MEArecSortingExtractor: 10 units - 1 segments - 32.0kHz
Expand Down Expand Up @@ -128,7 +128,7 @@ This is how you retrieve info from a ``BaseRecording``\ …
fs = recording.get_sampling_frequency()
num_chan = recording.get_num_channels()
num_seg = recording.get_num_segments()
print("Channel ids:", channel_ids)
print("Sampling frequency:", fs)
print("Number of channels:", num_chan)
Expand All @@ -152,7 +152,7 @@ This is how you retrieve info from a ``BaseRecording``\ …
num_seg = recording.get_num_segments()
unit_ids = sorting_true.get_unit_ids()
spike_train = sorting_true.get_unit_spike_train(unit_id=unit_ids[0])
print("Number of segments:", num_seg)
print("Unit ids:", unit_ids)
print("Spike train of first unit:", spike_train)
Expand Down Expand Up @@ -182,9 +182,9 @@ to set it *manually*.
probe = recording.get_probe()
print(probe)
from probeinterface.plotting import plot_probe
_ = plot_probe(probe)
Expand Down Expand Up @@ -218,17 +218,17 @@ object to disk.
print(recording_f)
recording_cmr = si.common_reference(recording_f, reference="global", operator="median")
print(recording_cmr)
# this computes and saves the recording after applying the preprocessing chain
recording_preprocessed = recording_cmr.save(format="binary")
print(recording_preprocessed)
.. parsed-literal::
BandpassFilterRecording: 32 channels - 32.0kHz - 1 segments - 320,000 samples - 10.00s
BandpassFilterRecording: 32 channels - 32.0kHz - 1 segments - 320,000 samples - 10.00s
float32 dtype - 39.06 MiB
CommonReferenceRecording: 32 channels - 32.0kHz - 1 segments - 320,000 samples - 10.00s
CommonReferenceRecording: 32 channels - 32.0kHz - 1 segments - 320,000 samples - 10.00s
float32 dtype - 39.06 MiB
Use cache_folder=/tmp/spikeinterface_cache/tmpru22r5_r/GW132ZJO
write_binary_recording with n_jobs = 4 and chunk_size = 32000
Expand All @@ -242,7 +242,7 @@ object to disk.
.. parsed-literal::
BinaryFolderRecording: 32 channels - 32.0kHz - 1 segments - 320,000 samples - 10.00s
BinaryFolderRecording: 32 channels - 32.0kHz - 1 segments - 320,000 samples - 10.00s
float32 dtype - 39.06 MiB
Expand Down Expand Up @@ -333,7 +333,7 @@ Alternatively we can pass a full dictionary containing the parameters:
other_params = ss.get_default_sorter_params("tridesclous")
other_params["detect_threshold"] = 6
# parameters set by params dictionary
sorting_TDC_2 = ss.run_sorter(
sorter_name="tridesclous", recording=recording_preprocessed, output_folder="tdc_output2", **other_params
Expand Down Expand Up @@ -700,11 +700,11 @@ in the same way as earlier
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Expand Down Expand Up @@ -1024,7 +1024,7 @@ on the “Save as snapshot (sha://)” and copy the URI:
.. code:: ipython3
uri = "sha1://68cb54a9aaed2303fb82dedbc302c853e818f1b6"
sorting_curated_sv = scur.apply_sortingview_curation(sorting_TDC, uri_or_json=uri)
print(sorting_curated_sv)
print(sorting_curated_sv.get_property("accept"))
Expand Down Expand Up @@ -1096,7 +1096,7 @@ above a certain threshold:
qm_data = analyzer_TDC.get_extension("quality_metrics").get_data()
keep_mask = (qm_data["snr"] > 10) & (qm_data["isi_violations_ratio"] < 0.01)
print("Mask:", keep_mask.values)
sorting_curated_auto = sorting_TDC.select_units(sorting_TDC.unit_ids[keep_mask])
print(sorting_curated_auto)
Expand Down Expand Up @@ -1140,7 +1140,7 @@ performance and plot a confusion matrix
.. parsed-literal::
accuracy recall precision false_discovery_rate miss_rate
gt_unit_id
gt_unit_id
#0 1.0 1.0 1.0 0.0 0.0
#1 1.0 1.0 1.0 0.0 0.0
#2 0.976744 0.976744 1.0 0.0 0.023256
Expand Down Expand Up @@ -1217,9 +1217,9 @@ graph showing how the units are matched between the sorters.
.. code:: ipython3
sorting_agreement = comp_multi.get_agreement_sorting(minimum_agreement_count=2)
print("Units in agreement between TDC, SC2, and KS2:", sorting_agreement.get_unit_ids())
w_multi = sw.plot_multicomparison_agreement(comp_multi)
w_multi = sw.plot_multicomparison_agreement_by_sorter(comp_multi)
Expand Down

0 comments on commit 98c1dd4

Please sign in to comment.