Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

dev #5

Merged
merged 4 commits into from
Jan 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 52 additions & 24 deletions src/spikeinterface_pipelines/pipeline.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from __future__ import annotations
from pathlib import Path
from typing import Tuple

Expand All @@ -10,18 +11,25 @@
from .postprocessing import postprocess, PostprocessingParams


# TODO - WIP
def run_pipeline(
recording: si.BaseRecording,
scratch_folder: Path = Path("./scratch/"),
results_folder: Path = Path("./results/"),
job_kwargs: JobKwargs = JobKwargs(),
preprocessing_params: PreprocessingParams = PreprocessingParams(),
spikesorting_params: SpikeSortingParams = SpikeSortingParams(),
postprocessing_params: PostprocessingParams = PostprocessingParams(),
scratch_folder: Path | str = Path("./scratch/"),
results_folder: Path | str = Path("./results/"),
job_kwargs: JobKwargs | dict = JobKwargs(),
preprocessing_params: PreprocessingParams | dict = PreprocessingParams(),
spikesorting_params: SpikeSortingParams | dict = SpikeSortingParams(),
postprocessing_params: PostprocessingParams | dict = PostprocessingParams(),
run_preprocessing: bool = True,
) -> Tuple[si.BaseRecording, si.BaseSorting, si.WaveformExtractor]:
run_spikesorting: bool = True,
run_postprocessing: bool = True,
) -> Tuple[
si.BaseRecording | None,
si.BaseSorting | None,
si.WaveformExtractor | None
]:
# Create folders
results_folder = Path(results_folder)
scratch_folder = Path(scratch_folder)
scratch_folder.mkdir(exist_ok=True, parents=True)
results_folder.mkdir(exist_ok=True, parents=True)

Expand All @@ -30,6 +38,16 @@ def run_pipeline(
results_folder_spikesorting = results_folder / "spikesorting"
results_folder_postprocessing = results_folder / "postprocessing"

# Arguments Models validation, in case of dict
if isinstance(job_kwargs, dict):
job_kwargs = JobKwargs(**job_kwargs)
if isinstance(preprocessing_params, dict):
preprocessing_params = PreprocessingParams(**preprocessing_params)
if isinstance(spikesorting_params, dict):
spikesorting_params = SpikeSortingParams(**spikesorting_params)
if isinstance(postprocessing_params, dict):
postprocessing_params = PostprocessingParams(**postprocessing_params)

# set global job kwargs
si.set_global_job_kwargs(**job_kwargs.model_dump())

Expand All @@ -49,23 +67,33 @@ def run_pipeline(
recording_preprocessed = recording

# Spike Sorting
sorting = spikesort(
recording=recording_preprocessed,
scratch_folder=scratch_folder,
spikesorting_params=spikesorting_params,
results_folder=results_folder_spikesorting,
)
if sorting is None:
raise Exception("Spike sorting failed")
if run_spikesorting:
sorting = spikesort(
recording=recording_preprocessed,
scratch_folder=scratch_folder,
spikesorting_params=spikesorting_params,
results_folder=results_folder_spikesorting,
)
if sorting is None:
raise Exception("Spike sorting failed")

# Postprocessing
waveform_extractor = postprocess(
recording=recording_preprocessed,
sorting=sorting,
postprocessing_params=postprocessing_params,
scratch_folder=scratch_folder,
results_folder=results_folder_postprocessing,
)
# Postprocessing
if run_postprocessing:
logger.info("Postprocessing sorting")
waveform_extractor = postprocess(
recording=recording_preprocessed,
sorting=sorting,
postprocessing_params=postprocessing_params,
scratch_folder=scratch_folder,
results_folder=results_folder_postprocessing,
)
else:
logger.info("Skipping postprocessing")
waveform_extractor = None
else:
logger.info("Skipping spike sorting")
sorting = None
waveform_extractor = None

# TODO: Curation

Expand Down
6 changes: 3 additions & 3 deletions src/spikeinterface_pipelines/preprocessing/preprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,10 +43,10 @@ def preprocess(

# Phase shift correction
if "inter_sample_shift" in recording.get_property_keys():
logger.info(f"[Preprocessing] \tPhase shift")
logger.info("[Preprocessing] \tPhase shift")
recording = spre.phase_shift(recording, **preprocessing_params.phase_shift.model_dump())
else:
logger.info(f"[Preprocessing] \tSkipping phase shift: 'inter_sample_shift' property not found")
logger.info("[Preprocessing] \tSkipping phase shift: 'inter_sample_shift' property not found")

# Highpass filter
recording_hp_full = spre.highpass_filter(recording, **preprocessing_params.highpass_filter.model_dump())
Expand All @@ -72,7 +72,7 @@ def preprocess(
f"[Preprocessing] \tMore than {max_bad_channel_fraction_to_remove * 100}% bad channels ({len(all_bad_channel_ids)}). "
)
logger.info("[Preprocessing] \tSkipping further processing for this recording.")
return None
return recording_hp_full

if preprocessing_params.remove_out_channels:
logger.info(f"[Preprocessing] \tRemoving {len(out_channel_ids)} out channels")
Expand Down
3 changes: 2 additions & 1 deletion src/spikeinterface_pipelines/spikesorting/params.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ class Kilosort25Model(BaseModel):
sig: float = Field(default=20, description="spatial smoothness constant for registration")
freq_min: float = Field(default=150, description="High-pass filter cutoff frequency")
sigmaMask: float = Field(default=30, description="Spatial constant in um for computing residual variance of spike")
lam: float = Field(default=10.0, description="The importance of the amplitude penalty (like in Kilosort1: 0 means not used, 10 is average, 50 is a lot)")
nPCs: int = Field(default=3, description="Number of PCA dimensions")
ntbuff: int = Field(default=64, description="Samples of symmetrical buffer for whitening and spike detection")
nfilt_factor: int = Field(default=4, description="Max number of clusters per good channel (even temporary ones) 4")
Expand All @@ -40,7 +41,7 @@ class Kilosort25Model(BaseModel):
wave_length: float = Field(
default=61, description="size of the waveform extracted around each detected peak, (Default 61, maximum 81)"
)
keep_good_only: bool = Field(default=True, description="If True only 'good' units are returned")
keep_good_only: bool = Field(default=False, description="If True only 'good' units are returned")
skip_kilosort_preprocessing: bool = Field(
default=False, description="Can optionaly skip the internal kilosort preprocessing"
)
Expand Down
16 changes: 11 additions & 5 deletions src/spikeinterface_pipelines/spikesorting/spikesorting.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
from __future__ import annotations
from pathlib import Path
import shutil

import spikeinterface as si
import spikeinterface.sorters as ss
import spikeinterface.full as si
import spikeinterface.curation as sc

from ..logger import logger
Expand Down Expand Up @@ -38,14 +37,21 @@ def spikesort(

try:
logger.info(f"[Spikesorting] \tStarting {spikesorting_params.sorter_name} spike sorter")
sorting = ss.run_sorter(

## TEST ONLY - REMOVE LATER ##
# si.get_default_sorter_params('kilosort2_5')
# params_kilosort2_5 = {'do_correction': False}
## --------------------------##

sorting = si.run_sorter(
recording=recording,
sorter_name=spikesorting_params.sorter_name,
output_folder=str(output_folder),
verbose=False,
verbose=True,
delete_output_folder=True,
remove_existing_folder=True,
**spikesorting_params.sorter_kwargs.model_dump(),
# **params_kilosort2_5
)
logger.info(f"[Spikesorting] \tFound {len(sorting.unit_ids)} raw units")
# remove spikes beyond num_Samples (if any)
Expand Down