Skip to content

Commit

Permalink
NEW: probe reader for Neuropixels 1.0 in SpikeGadgets .rec file.
Browse files Browse the repository at this point in the history
  • Loading branch information
gkBCCN committed Mar 28, 2024
1 parent 6556be9 commit 373741c
Show file tree
Hide file tree
Showing 2 changed files with 181 additions and 2 deletions.
2 changes: 2 additions & 0 deletions src/probeinterface/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@
write_imro,
read_BIDS_probe,
write_BIDS_probe,
read_spikegadgets,
parse_spikegadgets_header,
read_spikeglx,
parse_spikeglx_meta,
get_saved_channel_indices_from_spikeglx_meta,
Expand Down
181 changes: 179 additions & 2 deletions src/probeinterface/io.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from collections import OrderedDict
from packaging.version import Version, parse
import numpy as np
from xml.etree import ElementTree

from . import __version__
from .probe import Probe
Expand Down Expand Up @@ -1263,12 +1264,188 @@ def write_imro(file: str | Path, probe: Probe):
f.write("".join(ret))


def read_spikegadgets(file: str | Path) -> ProbeGroup:
"""
Find active channels of the given Neuropixels probe from a SpikeGadgets .rec file.
SpikeGadgets headstages support up to three Neuropixels 1.0 probes (as of March 28, 2024),
and information for all probes will be returned in a ProbeGroup object.
Within the SpikeConfiguration header element (sconf), there is a SpikeNTrode element
for each electrophysiology channel that contains information relevant to scaling and
otherwise displaying the information from that channel, as well as the id of the electrode
from which it is recording ('id').
Nested within each SpikeNTrode element is a SpikeChannel element with information about
the electrode dynamically connected to that channel. This contains information relevant
for spike sorting, i.e., its spatial location along the probe shank and the hardware channel
to which it is connected.
Excerpt of a sample SpikeConfiguration element:
<SpikeConfiguration chanPerChip="1889715760" device="neuropixels1" categories="">
<SpikeNTrode viewLFPBand="0"
viewStimBand="0"
id="1384" # @USE: The first digit is the probe number; the last three digits are the electrode number
lfpScalingToUv="0.018311105685598315"
LFPChan="1"
notchFreq="60"
rawRefOn="0"
refChan="1"
viewSpikeBand="1"
rawScalingToUv="0.018311105685598315" # For Neuropixels 1.0, raw and spike scaling are identical
spikeScalingToUv="0.018311105685598315" # Extracted when reading the raw data
refNTrodeID="1"
notchBW="10"
color="#c83200"
refGroup="2"
filterOn="1"
LFPHighFilter="200"
moduleDataOn="0"
groupRefOn="0"
lowFilter="600"
refOn="0"
notchFilterOn="0"
lfpRefOn="0"
lfpFilterOn="0"
highFilter="6000"
>
<SpikeChannel thresh="60"
coord_dv="-480" # @USE: dorsal-ventral coordinate in um (in pairs for staggered probe)
spikeSortingGroup="1782505664"
triggerOn="1"
stimCapable="0"
coord_ml="3192" # @USE: medial-lateral coordinate in um
coord_ap="3700" # doesn't vary, assuming the shank's flat face is along the ML axis
maxDisp="400"
hwChan="735" # @USE: unique device channel that is reading from electrode
/>
</SpikeNTrode>
...
</SpikeConfiguration>
Parameters
----------
file : Path or str
The .rec file path
Returns
-------
probe_group : ProbeGroup object
"""
# ------------------------- #
# Npix 1.0 constants #
# ------------------------- #
TOTAL_NPIX_ELECTRODES = 960
MAX_ACTIVE_CHANNELS = 384
CONTACT_WIDTH = 16 # um
CONTACT_HEIGHT = 20 # um
# ------------------------- #

# Read the header and get Configuration elements
header_txt = parse_spikegadgets_header(file)
root = ElementTree.fromstring(header_txt)
hconf = root.find("HardwareConfiguration")
sconf = root.find("SpikeConfiguration")

# Get number of probes present (each has its own Device element)
probe_configs = [device for device in hconf if device.attrib['name'] == 'NeuroPixels1']
n_probes = len(probe_configs)
print(n_probes, "Neuropixels 1.0 probes found:")

# Container to store Probe objects
probe_group = ProbeGroup()

for curr_probe in range(1, n_probes + 1):
print(f'Reading probe{curr_probe}...', flush=True, end='')
probe_config = probe_configs[curr_probe - 1]

# Get number of active channels from probe Device element
active_channel_str = [option for option in probe_config if option.attrib['name'] == 'channelsOn'][0].attrib['data']
active_channels = [int(ch) for ch in active_channel_str.split(' ') if ch]
n_active_channels = sum(active_channels)
assert len(active_channels) == TOTAL_NPIX_ELECTRODES
assert n_active_channels <= MAX_ACTIVE_CHANNELS

# Find all channels/electrodes that belong to the current probe
contact_ids = []
device_channels = []
positions = np.zeros((n_active_channels, 2))

nt_i = 0 # Both probes are in sconf, so need an independent counter of probe electrodes while iterating through
for ntrode in sconf:
electrode_id = ntrode.attrib['id']
if int(electrode_id[0]) == curr_probe: # first digit of electrode id is probe number
contact_ids.append(electrode_id)
positions[nt_i, :] = (ntrode[0].attrib['coord_ml'], ntrode[0].attrib['coord_dv'])
device_channels.append(ntrode[0].attrib['hwChan'])
nt_i += 1
assert len(contact_ids) == n_active_channels

# Construct Probe object
probe = Probe(ndim=2, si_units="um", model_name="Neuropixels 1.0", manufacturer="IMEC")
probe.set_contacts(
contact_ids=contact_ids,
positions=positions,
shapes="square",
shank_ids=None,
shape_params={"width": CONTACT_WIDTH, "height": CONTACT_HEIGHT},
)

# Wire it (i.e., point contact/electrode ids to corresponding hardware/channel ids)
probe.set_device_channel_indices(device_channels)

# Create a nice polygon background when plotting the probes
x_min = positions[:, 0].min()
x_max = positions[:, 0].max()
x_mid = 0.5 * (x_max + x_min)
y_min = positions[:, 1].min()
y_max = positions[:, 1].max()
polygon_default = [
(x_min - 20, y_min - CONTACT_HEIGHT / 2),
(x_mid, y_min - 100),
(x_max + 20, y_min - CONTACT_HEIGHT / 2),
(x_max + 20, y_max + 20),
(x_min - 20, y_max + 20),
]
probe.set_planar_contour(polygon_default)

# If there are multiple probes, they must be shifted such that they don't occupy the same coordinates.
probe.move([250 * (curr_probe - 1), 0])

# Add the probe to the probe container
print(probe.get_contact_count(), 'active channels found.')
probe_group.add_probe(probe)

return probe_group


def parse_spikegadgets_header(file: str | Path) -> str:
"""
Parse file (SpikeGadgets .rec format) into a string until "</Configuration>",
which is the last tag of the header, after which the binary data begins.
"""
header_size = None
with open(file, mode="rb") as f:
while True:
line = f.readline()
if b"</Configuration>" in line:
header_size = f.tell()
break

if header_size is None:
ValueError("SpikeGadgets: the xml header does not contain '</Configuration>'")

f.seek(0)
return f.read(header_size).decode("utf8")


def read_spikeglx(file: str | Path) -> Probe:
"""
Read probe position for the meta file generated by SpikeGLX
See http://billkarsh.github.io/SpikeGLX/#metadata-guides for implementation.
The x_pitch/y_pitch/width are set automatically depending the NP version.
The x_pitch/y_pitch/width are set automatically depending on the NP version.
The shape is auto generated as a shank.
Expand Down Expand Up @@ -1333,7 +1510,7 @@ def read_spikeglx(file: str | Path) -> Probe:
def parse_spikeglx_meta(meta_file: str | Path) -> dict:
"""
Parse the "meta" file from spikeglx into a dict.
All fiields are kept in txt format and must also parsed themself.
All fields are kept in txt format and must also be parsed themselves.
"""
meta_file = Path(meta_file)
with meta_file.open(mode="r") as f:
Expand Down

0 comments on commit 373741c

Please sign in to comment.