-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
109 lines (92 loc) · 6.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# -*- coding: utf-8 -*-
"""Main file to launch scripts for heuristic-based design optimization.
"""
__authors__ = "tnavez"
__contact__ = "[email protected]"
__version__ = "1.0.0"
__copyright__ = "(c) 2020, Inria"
__date__ = "Oct 28 2022"
# System libs
import argparse
import pathlib
import importlib
def main(args=None):
""" Main entry point for the project
Parameters
----------
args : list
A list of arguments as if they were input in the command line. Leave it to None to use sys.argv.
"""
#######################
### Parse arguments ###
#######################
parser = argparse.ArgumentParser('Process args')
### Choose model
parser.add_argument('--name', '-n', help='Load a model: -n model_name')
parser.add_argument('--optimization_problem', '-op', help='Identification number of the optimization problem for a given design: -op id.', default=None)
### Choose application and its parameters
# Sensitivity Analysis
parser.add_argument('--sensitivity_analysis', '-sa', help='Compute sensitivity analysis: -sa', action='store_true')
parser.add_argument('--n_samples_per_param', '-nsa', help='Number of samples per optimization parameter for sensitivity analysis: -nsa n_samples_per_param', default= 2)
parser.add_argument('--sa_method', '-sam', help='Method for sensitivity analysis: -sam sa_method', default= "OAaT")
implemented_sa_methods = ["OAaT", "Sobol", "Exhaustive"] # One-at-a-time (OAaT) strategy, variance-based (Sobol) or Exhaustive method
# Design Optimization
parser.add_argument('--optimization', '-o', help='Launch design optimization: -o', action='store_true')
parser.add_argument('--n_iter', '-ni', help='Number of design optimization iterations: -ni n_iter', default= 10)
parser.add_argument('--solver_library', '-sl', help='Name of the solver used for design optimization: -sl solver_name.', default="optuna")
parser.add_argument('--solver_name', '-sn', help='Name of the type of solver used for design optimization: -sn solver_name.', default="evolutionary")
implemented_solvers = {"optuna": ["evolutionary", "bayesian"]}
# Design Simulation
parser.add_argument('--simulate_design', '-sd', help='Simulate design: -sd. By default, simulate the baseline design.', action='store_true')
parser.add_argument('--simulation_option', '-so', help='Simulation option: -so simulation_option. By default, baseline design option.', default='ba')
simulation_options = ["ba", "fo", "be"]
# General application parameters
parser.add_argument('--no_plot', '-np', help='Do not display produced plots: -np', action='store_true')
# Parsing
args = parser.parse_args(args)
assert args.name != None, "Please enter a model name"
config_link = pathlib.Path(str(pathlib.Path(__file__).parent.absolute())+"/Models/"+ args.name+"/Config.py")
assert pathlib.Path.exists(config_link), "Please enter a valid model name"
####################
### Main operand ###
####################
config_lib = importlib.import_module("Models."+ args.name+".Config")
Config = config_lib.Config()
id_config = None
if args.optimization_problem:
optimization_config_link = pathlib.Path(str(pathlib.Path(__file__).parent.absolute())+"/Models/"+ args.name+"/OptimizationConfigs/Config_" + args.optimization_problem + ".py")
if pathlib.Path.exists(optimization_config_link):
print("Load optimization problem config number " + args.optimization_problem)
optimization_config_lib = importlib.import_module("Models."+ args.name+".OptimizationConfigs.Config_" + args.optimization_problem)
Config = optimization_config_lib.OptimizationConfig()
id_config = args.optimization_problem
else:
print("Please enter an existing optimization problem config number. Loading base config instead.")
if args.solver_library not in implemented_solvers.keys():
print("Please choose a valid solver library. Available solver library are " + str(list(implemented_solvers.keys())))
elif args.solver_name not in implemented_solvers[args.solver_library]:
print("Please choose a solver available in the solver library " + args.solver_library + ". Available solvers are " + str(implemented_solvers[args.solver_library]))
if args.sensitivity_analysis: # Analyze the sensitivity of a set of design optimization objectives relative to each design variables.
print("Starting sensitivity analysis.")
sensitivity_analysis_lib = importlib.import_module("Applications.SensitivityAnalysis")
if args.sa_method not in implemented_sa_methods:
print("Please choose a valid sensitivity analysis method. Available sensitivity analysis methods are " + str(implemented_sa_methods))
elif int(args.n_samples_per_param) < 0:
print("Number of samples per parameter must be more than 0.")
else:
sensitivity_analysis_lib.analyse_sensitivity(Config, id_config=id_config, n_samples_per_param=int(args.n_samples_per_param), method=args.sa_method, plot_results=not args.no_plot)
if args.optimization: # Optimize a design
print("Starting design optimization.")
optimization_lib = importlib.import_module("Applications.Optimize")
if int(args.n_iter) < 0:
print("Number of optimization iteration must be more than 0.")
else:
optimization_lib.optimize(Config, id_config=id_config, n_iter=args.n_iter, solver_library_name=args.solver_library, solver_name=args.solver_name, plot_results=not args.no_plot)
if args.simulate_design: # Simulate design and visualize it in SOFA GUI
print("Starting design simulation and visualization in SOFA GUI")
simulate_lib = importlib.import_module("Applications.BasicSimulation")
if args.simulation_option not in simulation_options:
args.simulation_option = "ba"
simulate_lib.simulate(Config, id_config=id_config, design_choice = args.simulation_option, solver_library_name=args.solver_library, solver_name=args.solver_name)
if __name__ == "__main__":
main()