Skip to content

Shohruh72/PIPNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PIPNet Facial Landmark Detection

This repository contains the implementation of PIPNet, a robust approach for facial landmark detection using a deep learning model based on ResNet architectures.

Vizualization

Click here to watch the video

Key Achievements

Exceptional Model Performance on the 300W Dataset

Features

  • Utilizes ResNet as the backbone for the PIPNet model.

  • Supports training, testing, and real-time demo modes.

  • Includes a 300W dataset loader and loss computation.

  • Implements a face detector for real-time landmark detection in videos.

  • Designed for easy customization and scalability to accommodate research and development needs.

Requirements

conda create -n PyTorch python=3.8
conda activate PyTorch
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch-lts
pip install opencv-python==4.5.5.64
pip install PyYAML
pip install tqdm

Usage

Datasets: 300W

  • Download the datasets from official sources. The folder structure should look like this:
  • afw

  • helen

  • ibug

  • lfpw

Run the below command for dataset preparation

$ python -c 'from utils.util import DataGenerator; gen = DataGenerator("../Datasets_path/"); gen.run()'

Training

To train the model, run:

  • Configure your dataset path in main.py for training
$ python main.py --train

Testing

For testing the model, use:

  • Configure your dataset path in main.py for testing
$ python main.py --test

Real-Time Demo

To run the real-time facial landmark detection:

$ python main.py --demo

Results

Backbone Epochs Test NME Pretrained weights
ResNet18 120 3.37 model
ResNet50 120 3.23 model
ResNet101 120 3.17 model
Reference

About

The Facial Landmark Preprocessing Toolkit.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages