Skip to content

Commit

Permalink
feat: suppoprt yolo world
Browse files Browse the repository at this point in the history
* feat: suppoprt yolo world

* chore: auto rescale

* refactor: yolo world output shape

* chore: add 3 new ops, increase tensor arena size to fit yolo world

* chore: increase el heap size

* chroe: resize tensor arena
  • Loading branch information
iChizer0 authored Apr 28, 2024
1 parent e56f7ab commit f4f3ddb
Show file tree
Hide file tree
Showing 9 changed files with 381 additions and 5 deletions.
6 changes: 6 additions & 0 deletions core/algorithm/el_algorithm_delegate.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,9 @@ el_algorithm_type_t el_algorithm_type_from_engine(const Engine* engine) {
#ifdef _EL_ALGORITHM_YOLO_POSE_H_ // index 5
if (AlgorithmYOLOPOSE::is_model_valid(engine)) return EL_ALGO_TYPE_YOLO_POSE;
#endif
#ifdef _EL_ALGORITHM_YOLO_WORLD_H_ // index 8
if (AlgorithmYOLOWorld::is_model_valid(engine)) return EL_ALGO_TYPE_YOLO_WORLD;
#endif
#ifdef _EL_ALGORITHM_YOLO_V8_H_ // index 6
if (AlgorithmYOLOV8::is_model_valid(engine)) return EL_ALGO_TYPE_YOLO_V8;
#endif
Expand Down Expand Up @@ -103,6 +106,9 @@ AlgorithmDelegate::AlgorithmDelegate() {
#ifdef _EL_ALGORITHM_YOLO_POSE_H_
_registered_algorithms.emplace_front(&AlgorithmYOLOPOSE::algorithm_info);
#endif
#ifdef _EL_ALGORITHM_YOLO_WORLD_H_
_registered_algorithms.emplace_front(&AlgorithmYOLOWorld::algorithm_info);
#endif
#ifdef _EL_ALGORITHM_YOLO_V8_H_
_registered_algorithms.emplace_front(&AlgorithmYOLOV8::algorithm_info);
#endif
Expand Down
3 changes: 2 additions & 1 deletion core/algorithm/el_algorithm_delegate.h
Original file line number Diff line number Diff line change
Expand Up @@ -32,11 +32,12 @@
#include "el_algorithm_base.h"
#include "el_algorithm_fomo.h"
#include "el_algorithm_imcls.h"
#include "el_algorithm_nvidia_det.h"
#include "el_algorithm_pfld.h"
#include "el_algorithm_yolo.h"
#include "el_algorithm_yolo_pose.h"
#include "el_algorithm_yolo_world.h"
#include "el_algorithm_yolov8.h"
#include "el_algorithm_nvidia_det.h"

namespace edgelab {

Expand Down
242 changes: 242 additions & 0 deletions core/algorithm/el_algorithm_yolo_world.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,242 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2024 Seeed Technology Co.,Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/

#include "el_algorithm_yolo_world.h"

#include <cmath>
#include <type_traits>

#include "core/el_common.h"
#include "core/el_debug.h"
#include "core/utils/el_cv.h"
#include "core/utils/el_nms.h"

namespace edgelab {

AlgorithmYOLOWorld::InfoType AlgorithmYOLOWorld::algorithm_info{types::el_algorithm_yolo_world_config_t::info};

AlgorithmYOLOWorld::AlgorithmYOLOWorld(EngineType* engine, ScoreType score_threshold, IoUType iou_threshold)
: Algorithm(engine, AlgorithmYOLOWorld::algorithm_info),
_w_scale(1.f),
_h_scale(1.f),
_score_threshold(score_threshold),
_iou_threshold(iou_threshold) {
init();
}

AlgorithmYOLOWorld::AlgorithmYOLOWorld(EngineType* engine, const ConfigType& config)
: Algorithm(engine, config.info),
_w_scale(1.f),
_h_scale(1.f),
_score_threshold(config.score_threshold),
_iou_threshold(config.iou_threshold) {
init();
}

AlgorithmYOLOWorld::~AlgorithmYOLOWorld() {
_results.clear();
this->__p_engine = nullptr;
}

bool AlgorithmYOLOWorld::is_model_valid(const EngineType* engine) {
const auto& input_shape{engine->get_input_shape(0)};
if (input_shape.size != 4 || // B, W, H, C
input_shape.dims[0] != 1 || // B = 1
input_shape.dims[1] ^ input_shape.dims[2] || // W = H
input_shape.dims[1] < 32 || // W, H >= 32
input_shape.dims[1] % 32 || // W or H is multiply of 32
(input_shape.dims[3] != 3 && // C = RGB or Gray
input_shape.dims[3] != 1))
return false;

auto ibox_len{[&]() {
auto r{static_cast<uint16_t>(input_shape.dims[1])};
auto s{r >> 5}; // r / 32
auto m{r >> 4}; // r / 16
auto l{r >> 3}; // r / 8
return (s * s + m * m + l * l);
}()};

const auto& output_shape_0{engine->get_output_shape(0)};
if (output_shape_0.size != 3 || // B, IB, BC...
output_shape_0.dims[0] != 1 || // B = 1
output_shape_0.dims[1] != ibox_len || // IB is based on input shape
output_shape_0.dims[2] != 4)
return false;

const auto& output_shape_1{engine->get_output_shape(1)};
if (output_shape_1.size != 3 || // B, IB, BC...
output_shape_1.dims[0] != 1 || // B = 1
output_shape_1.dims[1] != ibox_len || // IB is based on input shape
output_shape_1.dims[2] < 1 || // 0 < T <= 80 (could be larger than 80)
output_shape_1.dims[2] > 80)
return false;

return true;
}

inline void AlgorithmYOLOWorld::init() {
EL_ASSERT(is_model_valid(this->__p_engine));
EL_ASSERT(_score_threshold.is_lock_free());
EL_ASSERT(_iou_threshold.is_lock_free());

for (size_t i = 0; i < _outputs; ++i) {
_output_shapes[i] = this->__p_engine->get_output_shape(i);
_output_quant_params[i] = this->__p_engine->get_output_quant_param(i);
}

_input_img.data = static_cast<decltype(ImageType::data)>(this->__p_engine->get_input(0));
_input_img.width = static_cast<decltype(ImageType::width)>(this->__input_shape.dims[1]),
_input_img.height = static_cast<decltype(ImageType::height)>(this->__input_shape.dims[2]),
_input_img.size =
static_cast<decltype(ImageType::size)>(_input_img.width * _input_img.height * this->__input_shape.dims[3]);
_input_img.format = EL_PIXEL_FORMAT_UNKNOWN;
_input_img.rotate = EL_PIXEL_ROTATE_0;
if (this->__input_shape.dims[3] == 3) {
_input_img.format = EL_PIXEL_FORMAT_RGB888;
} else if (this->__input_shape.dims[3] == 1) {
_input_img.format = EL_PIXEL_FORMAT_GRAYSCALE;
}
EL_ASSERT(_input_img.format != EL_PIXEL_FORMAT_UNKNOWN);
EL_ASSERT(_input_img.rotate != EL_PIXEL_ROTATE_UNKNOWN);
}

el_err_code_t AlgorithmYOLOWorld::run(ImageType* input) {
_w_scale = static_cast<float>(input->width) / static_cast<float>(_input_img.width);
_h_scale = static_cast<float>(input->height) / static_cast<float>(_input_img.height);

// TODO: image type conversion before underlying_run, because underlying_run doing a type erasure
return underlying_run(input);
};

el_err_code_t AlgorithmYOLOWorld::preprocess() {
auto* i_img{static_cast<ImageType*>(this->__p_input)};

// convert image
el_img_convert(i_img, &_input_img);

auto size{_input_img.size};
for (decltype(ImageType::size) i{0}; i < size; ++i) {
_input_img.data[i] -= 128;
}

return EL_OK;
}

el_err_code_t AlgorithmYOLOWorld::postprocess() {
_results.clear();

// get outputs
auto* data_bboxes{static_cast<int8_t*>(this->__p_engine->get_output(0))};
auto* data_scores{static_cast<int8_t*>(this->__p_engine->get_output(1))};

auto width{this->__input_shape.dims[1]};
auto height{this->__input_shape.dims[2]};

float scale_scores{_output_quant_params[1].scale};
scale_scores = scale_scores < 0.1f ? scale_scores * 100.f : scale_scores; // rescale
int32_t zero_point_scores{_output_quant_params[1].zero_point};

float scale_bboxes{_output_quant_params[0].scale};
int32_t zero_point_bboxes{_output_quant_params[0].zero_point};

auto num_bboxes{this->__output_shape.dims[1]};
auto num_element{this->__output_shape.dims[2]};
auto num_classes{static_cast<uint8_t>(_output_shapes[1].dims[2])};

ScoreType score_threshold{get_score_threshold()};
IoUType iou_threshold{get_iou_threshold()};

// parse output
for (size_t bbox_i = 0; bbox_i < num_bboxes; ++bbox_i) {
size_t idx_s = bbox_i * num_classes;
for (size_t target_i = 0; target_i < num_classes; ++target_i) {
uint8_t bbox_i_score =
static_cast<decltype(scale_scores)>(data_scores[idx_s + target_i] - zero_point_scores) * scale_scores;
if (bbox_i_score < score_threshold) {
continue;
}

{
BoxType box{
.x = 0,
.y = 0,
.w = 0,
.h = 0,
.score = bbox_i_score,
.target = static_cast<decltype(BoxType::target)>(target_i),
};

size_t idx_b = bbox_i * num_element;
auto tl_x{((data_bboxes[idx_b + INDEX_TL_X] - zero_point_bboxes) * scale_bboxes)};
auto tl_y{((data_bboxes[idx_b + INDEX_TL_Y] - zero_point_bboxes) * scale_bboxes)};
auto br_x{((data_bboxes[idx_b + INDEX_BR_X] - zero_point_bboxes) * scale_bboxes)};
auto br_y{((data_bboxes[idx_b + INDEX_BR_Y] - zero_point_bboxes) * scale_bboxes)};

box.w = br_x - tl_x;
box.h = br_y - tl_y;
box.x = tl_x + box.w / 2;
box.y = tl_y + box.h / 2;

box.x = EL_CLIP(box.x, 0, width) * _w_scale;
box.y = EL_CLIP(box.y, 0, height) * _h_scale;
box.w = EL_CLIP(box.w, 0, width) * _w_scale;
box.h = EL_CLIP(box.h, 0, height) * _h_scale;

_results.emplace_front(std::move(box));
}
}
}

el_nms(_results, iou_threshold, score_threshold, false, true);

_results.sort([](const BoxType& a, const BoxType& b) { return a.x < b.x; });

return EL_OK;
}

const std::forward_list<AlgorithmYOLOWorld::BoxType>& AlgorithmYOLOWorld::get_results() const { return _results; }

void AlgorithmYOLOWorld::set_score_threshold(ScoreType threshold) { _score_threshold.store(threshold); }

AlgorithmYOLOWorld::ScoreType AlgorithmYOLOWorld::get_score_threshold() const { return _score_threshold.load(); }

void AlgorithmYOLOWorld::set_iou_threshold(IoUType threshold) { _iou_threshold.store(threshold); }

AlgorithmYOLOWorld::IoUType AlgorithmYOLOWorld::get_iou_threshold() const { return _iou_threshold.load(); }

void AlgorithmYOLOWorld::set_algorithm_config(const ConfigType& config) {
set_score_threshold(config.score_threshold);
set_iou_threshold(config.iou_threshold);
}

AlgorithmYOLOWorld::ConfigType AlgorithmYOLOWorld::get_algorithm_config() const {
ConfigType config;
config.score_threshold = get_score_threshold();
config.iou_threshold = get_iou_threshold();
return config;
}

} // namespace edgelab
112 changes: 112 additions & 0 deletions core/algorithm/el_algorithm_yolo_world.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2024 Seeed Technology Co.,Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/

#ifndef _EL_ALGORITHM_YOLO_WORLD_H_
#define _EL_ALGORITHM_YOLO_WORLD_H_

#include <atomic>
#include <cstdint>
#include <forward_list>

#include "core/el_types.h"
#include "el_algorithm_base.h"

namespace edgelab {

using namespace edgelab::base;
using namespace edgelab::types;

namespace types {

// we're not using inheritance since it not standard layout
struct el_algorithm_yolo_world_config_t {
static constexpr el_algorithm_info_t info{
.type = EL_ALGO_TYPE_YOLO_WORLD, .categroy = EL_ALGO_CAT_DET, .input_from = EL_SENSOR_TYPE_CAM};
uint8_t score_threshold = 50;
uint8_t iou_threshold = 45;
};

} // namespace types

class AlgorithmYOLOWorld final : public Algorithm {
public:
using ImageType = el_img_t;
using BoxType = el_box_t;
using ConfigType = el_algorithm_yolo_world_config_t;
using ScoreType = decltype(el_algorithm_yolo_world_config_t::score_threshold);
using IoUType = decltype(el_algorithm_yolo_world_config_t::iou_threshold);

static InfoType algorithm_info;

AlgorithmYOLOWorld(EngineType* engine, ScoreType score_threshold = 50, IoUType iou_threshold = 45);
AlgorithmYOLOWorld(EngineType* engine, const ConfigType& config);
~AlgorithmYOLOWorld();

static bool is_model_valid(const EngineType* engine);

el_err_code_t run(ImageType* input);
const std::forward_list<BoxType>& get_results() const;

void set_score_threshold(ScoreType threshold);
ScoreType get_score_threshold() const;

void set_iou_threshold(IoUType threshold);
IoUType get_iou_threshold() const;

void set_algorithm_config(const ConfigType& config);
ConfigType get_algorithm_config() const;

protected:
inline void init();

el_err_code_t preprocess() override;
el_err_code_t postprocess() override;

private:
enum {
INDEX_TL_X = 0,
INDEX_TL_Y = 1,
INDEX_BR_X = 2,
INDEX_BR_Y = 3,
};

ImageType _input_img;
float _w_scale;
float _h_scale;

std::atomic<ScoreType> _score_threshold;
std::atomic<IoUType> _iou_threshold;

static constexpr size_t _outputs = 7;

el_shape_t _output_shapes[_outputs];
el_quant_param_t _output_quant_params[_outputs];

std::forward_list<BoxType> _results;
};

} // namespace edgelab

#endif
1 change: 1 addition & 0 deletions core/el_types.h
Original file line number Diff line number Diff line change
Expand Up @@ -175,6 +175,7 @@ typedef enum {
EL_ALGO_TYPE_YOLO_POSE = 5u,
EL_ALGO_TYPE_YOLO_V8 = 6u,
EL_ALGO_TYPE_NVIDIA_DET = 7u,
EL_ALGO_TYPE_YOLO_WORLD = 8u,
} el_algorithm_type_t;

/**
Expand Down
Loading

0 comments on commit f4f3ddb

Please sign in to comment.