Skip to content

Commit

Permalink
Update agent selection prompt
Browse files Browse the repository at this point in the history
  • Loading branch information
evpearce committed Dec 5, 2024
1 parent 785f13f commit d986a51
Show file tree
Hide file tree
Showing 16 changed files with 160 additions and 611 deletions.
4 changes: 0 additions & 4 deletions .env.example
Original file line number Diff line number Diff line change
Expand Up @@ -41,11 +41,9 @@ INTENT_AGENT_LLM="openai"
REPORT_AGENT_LLM="mistral"
VALIDATOR_AGENT_LLM="openai"
DATASTORE_AGENT_LLM="openai"
MATHS_AGENT_LLM="openai"
WEB_AGENT_LLM="openai"
CHART_GENERATOR_LLM="openai"
ROUTER_LLM="openai"
FILE_AGENT_LLM="openai"
SUGGESTIONS_LLM="openai"
DYNAMIC_KNOWLEDGE_GRAPH_LLM="openai"

Expand All @@ -56,10 +54,8 @@ INTENT_AGENT_MODEL="gpt-4o-mini"
REPORT_AGENT_MODEL="mistral-large-latest"
VALIDATOR_AGENT_MODEL="gpt-4o-mini"
DATASTORE_AGENT_MODEL="gpt-4o-mini"
MATHS_AGENT_MODEL="gpt-4o-mini"
WEB_AGENT_MODEL="gpt-4o-mini"
CHART_GENERATOR_MODEL="gpt-4o-mini"
ROUTER_MODEL="gpt-4o-mini"
FILE_AGENT_MODEL="gpt-4o-mini"
SUGGESTIONS_MODEL="gpt-4o-mini"
DYNAMIC_KNOWLEDGE_GRAPH_MODEL="gpt-4o"
85 changes: 85 additions & 0 deletions backend/promptfoo/agent_selection_config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
description: "Agent selection"

define:
&list_of_agents [
{
"name": "DatastoreAgent",
"description": "This agent is responsible for handling database queries to the bloomberg.csv dataset. This includes retrieving ESG scores, financial metrics, and other bloomberg-specific information. It interacts with the graph database to extract, process, and return ESG-related information from various sources, such as company sustainability reports or fund portfolios. This agent can not complete any task that is not specifically about the bloomberg.csv dataset.",
},
{
"name": "WebAgent",
"description": "This agent can perform general internet searches to complete the task by retrieving and summarizing the results and it can also perform web scrapes to retreive specific inpormation from web pages.",
},
{
"name": "ChartGeneratorAgent",
"description": "This agent is responsible for creating charts",
},
]

providers:
- id: openai:gpt-4o-mini
config:
temperature: 0

prompts: file://promptfoo_test_runner.py:create_prompt

tests:
- description: "Test the WebAgent is selected for an ESG data query when not related to bloomberg dataset"
vars:
user_prompt_template: "agent-selection-user-prompt"
user_prompt_args:
task: "What are the environmental factors that influence a company's ESG score?"
system_prompt_template: "agent-selection-system-prompt"
system_prompt_args:
list_of_agents: *list_of_agents
assert:
- type: javascript
value: JSON.parse(output).agent_name === "WebAgent"

- description: "Test the WebAgent is selected for queries about the news"
vars:
user_prompt_template: "agent-selection-user-prompt"
user_prompt_args:
task: "Are there any recent news articles discussing 3M Co's ESG initiatives?"
system_prompt_template: "agent-selection-system-prompt"
system_prompt_args:
list_of_agents: *list_of_agents
assert:
- type: javascript
value: JSON.parse(output).agent_name === "WebAgent"

- description: "Test the DatastoreAgent is selected for a data query related to the bloomberg dataset"
vars:
user_prompt_template: "agent-selection-user-prompt"
user_prompt_args:
task: "Which company name has the highest environmental ESG score in the bloomberg dataset?"
system_prompt_template: "agent-selection-system-prompt"
system_prompt_args:
list_of_agents: *list_of_agents
assert:
- type: javascript
value: JSON.parse(output).agent_name === "DatastoreAgent"

- description: "Test the DatastoreAgent is selected for a data query from the bloomberg.csv"
vars:
user_prompt_template: "agent-selection-user-prompt"
user_prompt_args:
task: "From the Bloomberg.csv data show me all the governance scores for american airlines in date order starting in the past."
system_prompt_template: "agent-selection-system-prompt"
system_prompt_args:
list_of_agents: *list_of_agents
assert:
- type: javascript
value: JSON.parse(output).agent_name === "DatastoreAgent"

- description: "Test the DatastoreAgent is selected for a query of 'the database'"
vars:
user_prompt_template: "agent-selection-user-prompt"
user_prompt_args:
task: "Check the database and give me all data for Masco Corp"
system_prompt_template: "agent-selection-system-prompt"
system_prompt_args:
list_of_agents: *list_of_agents
assert:
- type: javascript
value: JSON.parse(output).agent_name === "DatastoreAgent"
14 changes: 5 additions & 9 deletions backend/src/agents/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@
from src.agents.validator_agent import ValidatorAgent
from src.agents.answer_agent import AnswerAgent
from src.agents.chart_generator_agent import ChartGeneratorAgent
from src.agents.file_agent import FileAgent
from src.agents.report_agent import ReportAgent


Expand Down Expand Up @@ -37,14 +36,11 @@ def agent_details(agent) -> dict:


def get_available_agents() -> List[Agent]:
return [DatastoreAgent(config.datastore_agent_llm, config.datastore_agent_model),
WebAgent(config.web_agent_llm, config.web_agent_model),
ChartGeneratorAgent(config.chart_generator_llm,
config.chart_generator_model),
FileAgent(config.file_agent_llm, config.file_agent_model),
# FS-63 Silencing Math agent - tool is not optimised.
# MathsAgent(config.maths_agent_llm, config.maths_agent_model),
]
return [
DatastoreAgent(config.datastore_agent_llm, config.datastore_agent_model),
WebAgent(config.web_agent_llm, config.web_agent_model),
ChartGeneratorAgent(config.chart_generator_llm, config.chart_generator_model),
]


def get_agent_details():
Expand Down
32 changes: 14 additions & 18 deletions backend/src/agents/datastore_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,10 @@

cache = {}


async def generate_cypher_query_core(
question_intent, operation, question_params, aggregation, sort_order, timeframe, llm: LLM, model
) -> str:

details_to_create_cypher_query = engine.load_prompt(
"details-to-create-cypher-query",
question_intent=question_intent,
Expand All @@ -38,8 +38,9 @@ async def generate_cypher_query_core(
"generate-cypher-query", graph_schema=graph_schema, current_date=datetime.now()
)

llm_query = await llm.chat(model, generate_cypher_query_prompt, details_to_create_cypher_query,
return_json=True)
llm_query = await llm.chat(
model, generate_cypher_query_prompt, details_to_create_cypher_query, return_json=True
)
json_query = to_json(llm_query)
await publish_log_info(LogPrefix.USER, f"Cypher generated by the LLM: {llm_query}", __name__)
if json_query["query"] == "None":
Expand All @@ -49,12 +50,10 @@ async def generate_cypher_query_core(
except Exception as e:
logger.error(f"Error during data retrieval: {e}")
raise
response = {
"content": db_response,
"ignore_validation": "false"
}
response = {"content": db_response, "ignore_validation": "false"}
return json.dumps(response, indent=4)


@tool(
name="generate cypher query",
description="Generate Cypher query if the category is data driven, based on the operation to be performed",
Expand Down Expand Up @@ -88,11 +87,12 @@ async def generate_cypher_query_core(
),
},
)

async def generate_cypher(question_intent, operation, question_params, aggregation, sort_order,
timeframe, llm: LLM, model) -> str:
return await generate_cypher_query_core(question_intent, operation, question_params, aggregation, sort_order,
timeframe, llm, model)
async def generate_cypher(
question_intent, operation, question_params, aggregation, sort_order, timeframe, llm: LLM, model
) -> str:
return await generate_cypher_query_core(
question_intent, operation, question_params, aggregation, sort_order, timeframe, llm, model
)


async def get_semantic_layer_cache(llm, model, graph_schema):
Expand All @@ -104,14 +104,10 @@ async def get_semantic_layer_cache(llm, model, graph_schema):
else:
return cache


@agent(
name="DatastoreAgent",
description=(
"This agent is responsible for handling database queries related to ESG (Environmental, Social, Governance) "
"data, including retrieving ESG scores, financial metrics, and other company-specific or fund-specific "
"information. It interacts with the graph database to extract, process, and return ESG-related information "
"from various sources, such as company sustainability reports or fund portfolios."
),
description="This agent is responsible for handling database queries to the bloomberg.csv dataset. This includes retrieving ESG scores, financial metrics, and other bloomberg-specific information. It interacts with the graph database to extract, process, and return ESG-related information from various sources, such as company sustainability reports or fund portfolios. This agent can not complete any task that is not specifically about the bloomberg.csv dataset.", # noqa: E501
tools=[generate_cypher],
)
class DatastoreAgent(Agent):
Expand Down
102 changes: 0 additions & 102 deletions backend/src/agents/file_agent.py

This file was deleted.

Loading

0 comments on commit d986a51

Please sign in to comment.