IRKGaussLegendre.jl is an efficient Julia implementation of an implicit Runge-Kutta Gauss-Legendre 16th order method. The method is fully integrated into the DifferentialEquations.jl ecosystem for high-precision integration.
Required Julia 1.5 version or higher
We present a Julia implementation of a 16th order Implicit Runge-Kutta integrator IRKGL16 (a 8-stage IRK scheme based on Gauss-Legendre nodes) for high accuracy numerical integration of non-stiff ODE systems. Our algorithm supports adaptive time-steping, SIMD-vectorization and multithreading to solve problems fast and accurately
The family of implicit Runge-Kutta schemes based on collocation with Gauss-Legendre nodes is known to be symplectic and super-convergent (order 2s for the method with s internal nodes), making them very convenient for high-precision numerical integration of Hamiltonian systems with constant time-step size. For non-stiff problems, implementations based on fixed-point iterations are recommended
We believe that, for general (non-necessarily Hamiltonian) non-stiff ODE systems, such implicit Runge-Kutta methods (implemented with fixed point iteration) can be very competitive for high precision computations. We show that a vectorized implementation of IRKGL16 that exploits the SIMD-based parallelism offered by modern processor can be more efficient than high order explicit Runge-Kutta methods even for double precision computations (see the following experiment as an example).
This package can be installed using
julia>using Pkg
julia>Pkg.add("IRKGaussLegendre.jl")
julia>using IRKGaussLegendre
- dt: stepsize
- save_everystep: saves the result at every step. Default is true (see keyword argument mstep)
- adaptive: =true (adaptive timestepping); =false (fixed timestepping)
- maxiters: maximum number of fixed-point iterations before stopping
- abstol: absolute tolerance in adaptive timestepping
- reltol: relative tolerance in adaptive timestepping
-
second_order_ode (boolean):
- =false (default): for a ODEProblem type - =true: for a second-order differential equation
-
simd (boolean):
- =true: SIMD-vectorized implementation only available for Float32 or Float64 computations - =false (default): generic implementation that can use with arbitrary Julia-defined number systems
-
mstep: output saved at every 'mstep' steps. Default 1.
-
initial_extrapolation: initialization method for stages.
- =false: simplest initialization - =true (default): extrapolation from the stage values of previous step
-
maxtrials: maximum number of attempts to accept adaptive step size
-
threading
- =false (default): sequential execution of the numerical integration - =true: computations using threads (shared memory multi-threading) for stage-wise parallelization
The solution types have a retcode field which returns a symbol signifying the error state of the solution. The retcodes are as follows:
- ReturnCode.Success: The integration completed without erroring.
- ReturnCode.Failure: General uncategorized failures or errors.
Three point masses attract each other according to the Newtonian law of gravitation. The masses of the particles are m1=3, m2=4, and m3=5; they are initially located at the apexes of a right triangle with sides 3, 4, and 5, so that the corresponding masses and sides are opposite. The particles are free to move in the plane of the triangle and are at rest initially.
Szebehely, V. 1967, "Burrau's Problem of Three Bodies", Proceedings of the National Academy of Sciences of the United States of America, vol. 58, Issue 1, pp. 60-65 postscript file
To solve this numerically, we define a problem type by giving it the equation, the initial condition, and the timespan to solve over:
using IRKGaussLegendre
using OrdinaryDiffEq
using Plots, LinearAlgebra, LaTeXStrings
function NbodyODE!(F,u,Gm,t)
N = length(Gm)
for i in 1:N
for k in 1:3
F[k, i, 2] = 0
end
end
for i in 1:N
xi = u[1,i,1]
yi = u[2,i,1]
zi = u[3,i,1]
Gmi = Gm[i]
for j in i+1:N
xij = xi - u[1,j,1]
yij = yi - u[2,j,1]
zij = zi - u[3,j,1]
Gmj = Gm[j]
dotij = (xij*xij+yij*yij+zij*zij)
auxij = 1/(sqrt(dotij)*dotij)
Gmjauxij = Gmj*auxij
F[1,i,2] -= Gmjauxij*xij
F[2,i,2] -= Gmjauxij*yij
F[3,i,2] -= Gmjauxij*zij
Gmiauxij = Gmi*auxij
F[1,j,2] += Gmiauxij*xij
F[2,j,2] += Gmiauxij*yij
F[3,j,2] += Gmiauxij*zij
end
end
for i in 1:3, j in 1:N
F[i,j,1] = u[i,j,2]
end
return nothing
end
Gm = [5, 4, 3]
N=length(Gm)
q=[1,-1,0,-2,-1,0,1,3,0]
v=zeros(size(q))
q0 = reshape(q,3,:)
v0 = reshape(v,3,:)
u0 = Array{Float64}(undef,3,N,2)
u0[:,:,1] = q0
u0[:,:,2] = v0
tspan = (0.0,63.0)
prob=ODEProblem(NbodyODE!,u0,tspan,Gm);
After defining a problem, you solve it using solve:
sol1=solve(prob,IRKGL16(second_order_ode=true, simd=false),adaptive=true, reltol=1e-14, abstol=1e-14);
@btime solve(prob,IRKGL16(second_order_ode=true, simd=false),adaptive=true, reltol=1e-14, abstol=1e-14);
24.989 ms (6018 allocations: 1.98 MiB)
- 6 x faster than generic implementation !!
- Faster than DPRKN12 !!
sol2=solve(prob,IRKGL16(second_order_ode=true, simd=true),adaptive=true, reltol=1e-14, abstol=1e-14)
@btime solve(prob,IRKGL16(second_order_ode=true, simd=true),adaptive=true, reltol=1e-14, abstol=1e-14);
4.386 ms (6000 allocations: 2.31 MiB)
function NbodyODE2nd!(ddu,du,u,Gm,t)
N = length(Gm)
for i in 1:N
for k in 1:3
ddu[k,i]= 0
end
end
for i in 1:N
xi = u[1,i]
yi = u[2,i]
zi = u[3,i]
Gmi = Gm[i]
for j in (i+1):N
xij = xi - u[1,j]
yij = yi - u[2,j]
zij = zi - u[3,j]
Gmj = Gm[j]
dotij = (xij*xij+yij*yij+zij*zij)
auxij = 1/(sqrt(dotij)*dotij)
Gmjauxij = Gmj*auxij
ddu[1,i] -= Gmjauxij*xij
ddu[2,i] -= Gmjauxij*yij
ddu[3,i] -= Gmjauxij*zij
Gmiauxij = Gmi*auxij
ddu[1,j] += Gmiauxij*xij
ddu[2,j] += Gmiauxij*yij
ddu[3,j] += Gmiauxij*zij
end
end
return nothing
end
q0=u0[:,:,1]
v0=u0[:,:,2]
prob2nd = SecondOrderODEProblem(NbodyODE2nd!,v0,q0,tspan,Gm)
sol3 =solve(prob2nd,DPRKN12(),abstol=1e-14,reltol=1e-14);
@btime solve(prob2nd,DPRKN12(),abstol=1e-14,reltol=1e-14, save_everystep=false);
6.082 ms (58656 allocations: 1.05 MiB)
Convert solution data to u0 format
nk=length(sol3.t)
etype=eltype(u0)
sol3u=Vector{Array{etype, 3}}(undef,nk)
sol3t=Vector{etype}(undef,nk)
uk=copy(u0)
for k in 1:nk
uk[:,:,1]=sol3.u[k].x[2]
uk[:,:,2]=sol3.u[k].x[1]
sol3u[k]=copy(uk)
sol3t[k]=sol3.t[k]
end
bodylist = ["Body-1", "Body-2", "Body-3"]
pl = plot(title="Pythagorean problem",xlabel="x", ylabel="y",aspect_ratio=1)
ulist1 = sol1.u[1:end]
tlist1 = sol1.t[1:end]
for j = 1:3
xlist = map(u->u[1,j,1], ulist1)
ylist = map(u->u[2,j,1], ulist1)
pl = plot!(xlist,ylist, label = bodylist[j])
end
plot(pl)
steps1 =sol1.t[2:end]-sol1.t[1:end-1]
plot!(sol1.t[2:end],steps1, label="generic")
steps2 =sol2.t[2:end]-sol2.t[1:end-1]
plot!(sol2.t[2:end],steps2, label="simd")
function NbodyEnergy(u,Gm)
N = length(Gm)
zerouel = zero(eltype(u))
T = zerouel
U = zerouel
for i in 1:N
qi = u[:,i,1]
vi = u[:,i,2]
Gmi = Gm[i]
T += Gmi*(vi[1]*vi[1]+vi[2]*vi[2]+vi[3]*vi[3])
for j in (i+1):N
qj = u[:,j,1]
Gmj = Gm[j]
qij = qi - qj
U -= Gmi*Gmj/norm(qij)
end
end
1/2*T + U
end
setprecision(BigFloat, 256)
u0Big=BigFloat.(u0)
GmBig=BigFloat.(Gm)
E0=NbodyEnergy(u0Big,GmBig)
ΔE1 = map(x->NbodyEnergy(BigFloat.(x),GmBig), sol1.u)./E0.-1
ΔE2 = map(x->NbodyEnergy(BigFloat.(x),GmBig), sol2.u)./E0.-1
plot(title="Error in energy", legend=:bottomright,
xlabel="t", ylabel=L"log10(\Delta E)")
plot!(sol1.t[2:end], abs.(ΔE1[2:end]), yscale=:log10, label="IRKGL16-generic")
plot!(sol2.t[2:end], abs.(ΔE2[2:end]), yscale=:log10, label="IRKGL16-simd")
plot!(sol3t[2:end], abs.(ΔE3[2:end]), yscale=:log10, label="DPRKN12")