Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Draft/onert] unify generating interfaces #13629

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 36 additions & 48 deletions runtime/onert/backend/train/BackendContext.cc
Original file line number Diff line number Diff line change
Expand Up @@ -136,22 +136,50 @@ getDisposableBackPropTensorList(const ir::train::TrainableGraph &tgraph,
}
} // namespace

backend::ITensorRegistry *BackendContext::genTensors()
FunctionMap BackendContext::gen()
{
planForwardTensors();
planBackwardTensors();

_tensor_builder->allocate();
_tensor_builder->allocateBackward();

return _tensor_registry.get();
}
auto codes = generateFunctionMap();

backend::train::ITensorRegistry *BackendContext::genTrainingTensors()
{
planBackwardTensors();
// Initialize TrainableTensors
trainable_graph()->operands().iterate(
[&](const ir::OperandIndex &ind, const ir::Operand &operand) {
if (external_operands().contains(ind) || !operand.isConstant())
return;

_tensor_builder->allocateBackward();
auto tensor = tensor_registry()->getNativeITensor(ind);
assert(tensor != nullptr);

VERBOSE(FillOperandData) << "Fill data for " << ind << std::endl;

auto data = operand.shareData();
assert(data && data->base());
auto trainable_tensor = dynamic_cast<TrainableTensor *>(tensor);

return _tensor_registry.get();
if (trainable_tensor == nullptr)
throw std::runtime_error{"This tensor is not trainable tensor"};

trainable_tensor->fillBuffer(data);
});

// NOTE For memory optimization, we want to free some operand data
const_cast<ir::train::TrainableGraph &>(*_tdata->tgraph)
.operands()
.iterate([&](const ir::OperandIndex &, ir::Operand &obj) { obj.releaseData(); });

// TODO Enable
// for (auto &&it : ret)
// {
// auto &fn_seq = it.second;
// fn_seq->iterate([&](exec::IFunction &ifunc) { ifunc.prepare(); });
// }

return codes;
}

void BackendContext::planForwardTensors()
Expand Down Expand Up @@ -209,46 +237,6 @@ void BackendContext::planBackwardTensors()
tensor_planner.planDisposableBackPropTensors(tensor_builder.get());
}

FunctionMap BackendContext::genKernels()
{
auto ret = generateFunctionMap();

// Initialize TrainableTensors
trainable_graph()->operands().iterate(
[&](const ir::OperandIndex &ind, const ir::Operand &operand) {
if (external_operands().contains(ind) || !operand.isConstant())
return;

auto tensor = tensor_registry()->getNativeITensor(ind);
assert(tensor != nullptr);

VERBOSE(FillOperandData) << "Fill data for " << ind << std::endl;

auto data = operand.shareData();
assert(data && data->base());
auto trainable_tensor = dynamic_cast<TrainableTensor *>(tensor);

if (trainable_tensor == nullptr)
throw std::runtime_error{"This tensor is not trainable tensor"};

trainable_tensor->fillBuffer(data);
});

// NOTE For memory optimization, we want to free some operand data
const_cast<ir::train::TrainableGraph &>(*_tdata->tgraph)
.operands()
.iterate([&](const ir::OperandIndex &, ir::Operand &obj) { obj.releaseData(); });

// TODO Enable
// for (auto &&it : ret)
// {
// auto &fn_seq = it.second;
// fn_seq->iterate([&](exec::IFunction &ifunc) { ifunc.prepare(); });
// }

return ret;
}

FunctionMap BackendContext::generateFunctionMap()
{
train::FunctionMap ret;
Expand Down
5 changes: 1 addition & 4 deletions runtime/onert/backend/train/BackendContext.h
Original file line number Diff line number Diff line change
Expand Up @@ -68,16 +68,13 @@ class BackendContext : public onert::backend::train::TrainableBackendContext
BackendContext &operator=(const BackendContext &) = delete;

public:
backend::ITensorRegistry *genTensors() override;
backend::train::ITensorRegistry *genTrainingTensors() override;
FunctionMap gen() override;

private:
void planForwardTensors();
void planBackwardTensors();

public:
FunctionMap genKernels() override;

std::shared_ptr<ExternalContext> external_context() { return _external_context; }

const exec::train::optimizer::Optimizer *optimizer() const { return _optimizer.get(); }
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -76,9 +76,7 @@ class TrainableBackendContext

std::shared_ptr<ITensorRegistry> tensor_registry() { return _tensor_registry; }

virtual ITensorRegistry *genTrainingTensors() = 0;
virtual backend::ITensorRegistry *genTensors() = 0;
virtual FunctionMap genKernels() = 0;
virtual FunctionMap gen() = 0;

private:
const ITrainableBackend *_backend{nullptr};
Expand Down
20 changes: 5 additions & 15 deletions runtime/onert/core/src/backend/builtin/train/BackendContext.cc
Original file line number Diff line number Diff line change
Expand Up @@ -28,29 +28,19 @@ namespace builtin
namespace train
{

backend::ITensorRegistry *BackendContext::genTensors()
backend::train::FunctionMap BackendContext::gen()
{
// For now, there is no need to generate tensors for forwarding.
// For now, there is no need to generate tensors for forwarding and backwarding.
// builtin train backend handles 3 operators: `Permute`, `IF`, `WHILE`.
// `Permute`: Tensor generation is not required.
// `IF`, `WHILE`: Not supported yet
return tensor_registry().get();
}

backend::train::ITensorRegistry *BackendContext::genTrainingTensors()
{
// For now, there is no need to generate tensors for backwarding.
return tensor_registry().get();
}

backend::train::FunctionMap BackendContext::genKernels()
{
backend::train::FunctionMap ret;
backend::train::FunctionMap codes;

for (auto &&op_ind : _tdata->op_order)
{
auto tn_seq = kernel_gen->generate(op_ind);
ret.emplace(op_ind, std::move(tn_seq));
codes.emplace(op_ind, std::move(tn_seq));
}

trainable_graph()->operands().iterate(
Expand All @@ -69,7 +59,7 @@ backend::train::FunctionMap BackendContext::genKernels()
// fn_seq->iterate([&](exec::IFunction &ifunc) { ifunc.prepare(); });
// }

return ret;
return codes;
}

} // namespace train
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -46,11 +46,7 @@ class BackendContext : public backend::train::TrainableBackendContext
{
}

backend::ITensorRegistry *genTensors() override;
backend::train::ITensorRegistry *genTrainingTensors() override;

public:
backend::train::FunctionMap genKernels() override;
backend::train::FunctionMap gen() override;

std::shared_ptr<ExternalContext> external_context() { return _external_context; }

Expand Down
55 changes: 32 additions & 23 deletions runtime/onert/core/src/compiler/ExecutorFactory.cc
Original file line number Diff line number Diff line change
Expand Up @@ -274,6 +274,21 @@ std::deque<std::pair<const backend::Backend *, Context *>> orderBackendContext(
return ordered_contexts;
}

void extractCodes(backend::train::FunctionMap &codes,
const compiler::train::LoweredTrainableGraph *lowered_graph,
compiler::train::TrainableCodeMap &code_map)
{
for (auto &&[op_ind, tn_seq] : codes)
{
auto &op = lowered_graph->trainable_graph().operation(op_ind);
const auto backend = lowered_graph->lower_info().operation.at(op_ind);

assert(code_map.find(op_ind) == code_map.end());
code_map.insert(
{op_ind, compiler::train::TrainableCodeAndInfo{op_ind, &op, backend, std::move(tn_seq)}});
}
}

} // namespace
} // namespace onert

Expand Down Expand Up @@ -741,15 +756,16 @@ exec::IExecutor *ExecutorFactory::createTrainableExecutor(
VERBOSE(ExecutorFactory) << "Linearize for backwarding order" << std::endl;
Linear::dump(*lowered_graph, backward_order);

for (auto &&pair : tbackend_contexts)
train::TrainableCodeMap code_map;
// Generate tensors and kernels
for (auto &&[backend, context] : tbackend_contexts)
{
pair.second->genTensors();
}
// builtin backend's kernel generator requires access to tensors in other backends.
if (backend->config()->id() == "builtin")
continue;

for (auto &&pair : tbackend_contexts)
{
auto tctx = pair.second.get();
tctx->genTrainingTensors();
auto codes = context->gen();
extractCodes(codes, lowered_graph.get(), code_map);
}

prepareMigrantTensors(*lowered_graph, tbackend_contexts);
Expand All @@ -767,6 +783,15 @@ exec::IExecutor *ExecutorFactory::createTrainableExecutor(
}
}

for (auto &&[backend, context] : tbackend_contexts)
{
if (backend->config()->id() == "builtin")
{
auto codes = context->gen();
extractCodes(codes, lowered_graph.get(), code_map);
}
}

// Adjust the order of backends for the upcoming iteration
auto ordered_contexts =
onert::orderBackendContext<backend::train::TrainableBackendContext>(tbackend_contexts);
Expand Down Expand Up @@ -845,22 +870,6 @@ exec::IExecutor *ExecutorFactory::createTrainableExecutor(
}));
}

train::TrainableCodeMap code_map;
// Generate kernels
for (auto &&pair : ordered_contexts)
{
auto codes = pair.second->genKernels();
for (auto &&[op_ind, tn_seq] : codes)
{
auto &op = lowered_graph->trainable_graph().operation(op_ind);
const auto backend = lowered_graph->lower_info().operation.at(op_ind);

assert(code_map.find(op_ind) == code_map.end());
code_map.insert(
{op_ind, train::TrainableCodeAndInfo{op_ind, &op, backend, std::move(tn_seq)}});
}
}

if (order.size() != code_map.size())
{
throw std::runtime_error("ExecutorFactory: Some kernels are not generated");
Expand Down