Unsupervised Domain Adaptation for SAR Target Recognition from Simulated to Measured Data in Time, Frequency and Scattering Domains
PyTorch implementation of the paper "Unsupervised Domain Adaptation for SAR Target Recognition from Simulated to Measured Data in Time, Frequency and Scattering Domains".
Please see INSTALL.md
Simulated | Measured | |||
training | training | testing | Total | |
14° to 17° | 14° to 16° | 17° | ||
2s1 | 174 | 116 | 58 | 348 |
bmp2 | 107 | 55 | 52 | 214 |
btr70 | 92 | 43 | 49 | 184 |
m1 | 129 | 78 | 51 | 258 |
m2 | 128 | 75 | 53 | 256 |
m35 | 129 | 76 | 53 | 258 |
m548 | 128 | 75 | 53 | 256 |
m60 | 176 | 116 | 60 | 352 |
t72 | 108 | 56 | 52 | 216 |
zsu23 | 174 | 116 | 58 | 348 |
Simulated | Measured | |||
training | training | testing | Total | |
14° to 17° | 16° | 17° | ||
2s1 | 174 | 50 | 58 | 282 |
bmp2 | 107 | 55 | 52 | 214 |
btr70 | 92 | 43 | 49 | 184 |
m1 | 129 | 52 | 51 | 232 |
m2 | 128 | 52 | 53 | 233 |
m35 | 129 | 52 | 53 | 234 |
m548 | 128 | 52 | 53 | 232 |
m60 | 176 | 51 | 60 | 288 |
t72 | 108 | 56 | 52 | 216 |
zsu23 | 174 | 50 | 58 | 282 |
Simulated | Measured | |||
training | training | testing | Total | |
14° to 16° | 16° | 17° | ||
2s1 | 116 | 50 | 58 | 224 |
bmp2 | 55 | 55 | 52 | 162 |
btr70 | 43 | 43 | 49 | 135 |
m1 | 78 | 52 | 51 | 181 |
m2 | 75 | 52 | 53 | 180 |
m35 | 76 | 52 | 53 | 181 |
m548 | 75 | 52 | 53 | 179 |
m60 | 116 | 51 | 60 | 228 |
t72 | 56 | 56 | 52 | 164 |
zsu23 | 116 | 50 | 58 | 224 |
Scene | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
Scene1 | $ 99.33\pm 00.19$% | $ 99.40\pm 00.15$% | $ 99.33\pm 00.19$% | $ 99.35\pm 00.18$% |
Scene2 | $ 98.89\pm 00.15$% | $ 98.98\pm 00.07$% | $ 98.89\pm 00.16$% | $ 98.88\pm 00.14$% |
Scene3 | $ 98.33\pm 00.32$% | $ 98.44\pm 00.24$% | $ 98.26\pm 00.41$% | $ 98.26\pm 00.37$% |
# Experiment Scene1
python tools/train.py --config configs/Scene1/TFSNet.yaml --data_dir datasets/Scene1 --src_domain Simulation --tgt_domain Real --checkpoints configs/Scene1
# Experiment Scene2
python tools/train.py --config configs/Scene2/TFSNet.yaml --data_dir datasets/Scene2 --src_domain Simulation --tgt_domain Real --checkpoints configs/Scene2
# Experiment Scene3
python tools/train.py --config configs/Scene3/TFSNet.yaml --data_dir datasets/Scene3 --src_domain Simulation --tgt_domain Real --checkpoints configs/Scene3
# Experiment Scene1
python tools/visualize_results.py --config configs/Scene1/TFSNet.yaml --data_dir datasets/Scene1 --tgt_domain Real --checkpoints configs/Scene1
# Experiment Scene2
python tools/visualize_results.py --config configs/Scene2/TFSNet.yaml --data_dir datasets/Scene2 --tgt_domain Real --checkpoints configs/Scene2
# Experiment Scene3
python tools/visualize_results.py --config configs/Scene3/TFSNet.yaml --data_dir datasets/Scene3 --tgt_domain Real --checkpoints configs/Scene3
The paper is currently in the review stage, so the important codes has not been uploaded yet.