Skip to content

A repsitory for tansfer adaptation learning methods for synthetic aperture radar (SAR) target recognition

Notifications You must be signed in to change notification settings

SAR-Images-Understanding-Yang/TFSNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unsupervised Domain Adaptation for SAR Target Recognition from Simulated to Measured Data in Time, Frequency and Scattering Domains

PyTorch implementation of the paper "Unsupervised Domain Adaptation for SAR Target Recognition from Simulated to Measured Data in Time, Frequency and Scattering Domains".

Install

Please see INSTALL.md

SAMPLE dataset Scene1

Simulated Measured
training training testing Total
14° to 17° 14° to 16° 17°
2s1 174 116 58 348
bmp2 107 55 52 214
btr70 92 43 49 184
m1 129 78 51 258
m2 128 75 53 256
m35 129 76 53 258
m548 128 75 53 256
m60 176 116 60 352
t72 108 56 52 216
zsu23 174 116 58 348

SAMPLE dataset Scene2

Simulated Measured
training training testing Total
14° to 17° 16° 17°
2s1 174 50 58 282
bmp2 107 55 52 214
btr70 92 43 49 184
m1 129 52 51 232
m2 128 52 53 233
m35 129 52 53 234
m548 128 52 53 232
m60 176 51 60 288
t72 108 56 52 216
zsu23 174 50 58 282

SAMPLE dataset Scene3

Simulated Measured
training training testing Total
14° to 16° 16° 17°
2s1 116 50 58 224
bmp2 55 55 52 162
btr70 43 43 49 135
m1 78 52 51 181
m2 75 52 53 180
m35 76 52 53 181
m548 75 52 53 179
m60 116 51 60 228
t72 56 56 52 164
zsu23 116 50 58 224

Classification models on the three Scenes of SAMPLE dataset

Scene Accuracy Precision Recall F1
Scene1 $ 99.33\pm 00.19$% $ 99.40\pm 00.15$% $ 99.33\pm 00.19$% $ 99.35\pm 00.18$%
Scene2 $ 98.89\pm 00.15$% $ 98.98\pm 00.07$% $ 98.89\pm 00.16$% $ 98.88\pm 00.14$%
Scene3 $ 98.33\pm 00.32$% $ 98.44\pm 00.24$% $ 98.26\pm 00.41$% $ 98.26\pm 00.37$%

Training

# Experiment Scene1
python tools/train.py --config configs/Scene1/TFSNet.yaml --data_dir datasets/Scene1 --src_domain Simulation --tgt_domain Real --checkpoints configs/Scene1

# Experiment Scene2
python tools/train.py --config configs/Scene2/TFSNet.yaml --data_dir datasets/Scene2 --src_domain Simulation --tgt_domain Real --checkpoints configs/Scene2

# Experiment Scene3
python tools/train.py --config configs/Scene3/TFSNet.yaml --data_dir datasets/Scene3 --src_domain Simulation --tgt_domain Real --checkpoints configs/Scene3

Testing and Visualizing

# Experiment Scene1
python tools/visualize_results.py --config configs/Scene1/TFSNet.yaml --data_dir datasets/Scene1 --tgt_domain Real --checkpoints configs/Scene1

# Experiment Scene2
python tools/visualize_results.py --config configs/Scene2/TFSNet.yaml --data_dir datasets/Scene2 --tgt_domain Real --checkpoints configs/Scene2

# Experiment Scene3
python tools/visualize_results.py --config configs/Scene3/TFSNet.yaml --data_dir datasets/Scene3 --tgt_domain Real --checkpoints configs/Scene3

Warning

The paper is currently in the review stage, so the important codes has not been uploaded yet.

About

A repsitory for tansfer adaptation learning methods for synthetic aperture radar (SAR) target recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages