Skip to content

Active Learning for Object Detection using Detectron2

Notifications You must be signed in to change notification settings

SAIVENKATARAJU/Detectron2_AL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Detectron2 for Active Learning in Object Detection

Usage

  1. Clone the repository with all the submodules:
    git clone --recurse-submodules [email protected]:lolipopshock/Detectron2_AL.git
  2. Install dependencies:
    1. Installing object detection environment with according to your environment
      • The tested version of pytorch is 1.4.0 with CUDA 10
      • And you must install Detectron2 with version 0.1.1. Newer versions has different APIs.
        pip install detectron2==0.1.1 \
            -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu100/torch1.4/index.html
    2. Installing other necessary dependencies:
          pip install -r requirements.txt
    3. Installing UI components
      cd src/label-studio
      pip install -e .
  3. Setting up the label-studio server and modeling backend
    1. Initialize the labeling server (If your image folder is ./data)
      label-studio init labeling/tk-labeling \
              --input-path=./data \
              --input-format=image-dir \
              --allow-serving-local-files --force \
              --label-config=extra/config.xml \
              --ml-backends http://localhost:9090
      And you can start the server via
      label-studio start labeling/tk-labeling
      
    2. Initialize the model backend server
      label-studio-ml init labeling/backend_model --script extra/backend_model.py
      And similarly, you can start the backend server by
      label-studio-ml start labeling/backend_model 
      # There's a relative import of the libraries
      # So you have to run this command in the project project
      # root path to avoid import errors
  4. Start using active learning for annotation

About

Active Learning for Object Detection using Detectron2

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 91.8%
  • Shell 8.2%