Skip to content

Commit

Permalink
Q #2
Browse files Browse the repository at this point in the history
  • Loading branch information
RoyBoy432 committed Feb 11, 2017
1 parent 8377e72 commit 3f4f608
Show file tree
Hide file tree
Showing 2 changed files with 109 additions and 13 deletions.
2 changes: 1 addition & 1 deletion Week2-Alpha/alpha_assignment.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ In the R code chunk below, please provide the code to:
4) Load the `vegan` R package (be sure to install if needed).

```{r}
rm(list=ls())
#rm(list=ls())
getwd()
#setwd("~/GitHub/QB2017_Moger-Reischer/Week2-Alpha")
#setwd("/Users/rzmogerr/GitHub/QB2017_Moger-Reischer/Week2-Alpha")
Expand Down
120 changes: 108 additions & 12 deletions Week5-Temporal/temporal_assignment.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ In the R code chunk below, provide the code to:
4. load any packages you need to complete the assignment.

```{r}
rm(list=ls())
#rm(list=ls())
getwd()
#setwd("~/GitHub/QB-2017/Week5-Temporal/")
package.list <- c('vegan', 'tidyr', 'dplyr', 'codyn', 'ggplot2',
Expand Down Expand Up @@ -90,31 +90,127 @@ In the R code chunk below, do the following:
5. Using the hypothesis testing tools you learned in the beta-diversity module, test the hypothesis that species abundances across sites vary as a factor of treatment type (i.e., plot_type).

```{r}
'''attach(portal)
str(portal)
mysbs94=filter(portal,year==1994)
str(mysbs94)
mysbs94=select(mysbs94,plot_id,species_id)'''
#'''attach(portal)
#str(portal)
#mysbs94=filter(portal,year==1994)
#str(mysbs94)
#mysbs94=select(mysbs94,plot_id,species_id)'''
portal <- unite(portal, col = date, c(year, month, day), sep = "-", remove = FALSE)
portal <- unite(portal, col = taxon, c(genus, species), sep = "_", remove = FALSE)
time.by.species <- group_by(portal, year, plot_id) %>% count(taxon) %>% spread(key = taxon, value = n, fill = 0)
mysbs94=filter(time.by.species,year==1994)
my_type<-portal%>%filter(year==1982)%>%group_by(plot_id,plot_type)%>%count(species_id)%>%spread(key = taxon, value = n, fill = 0)
portal2 <- unite(portal, col = date, c(year, month, day), sep = "-", remove = FALSE)
portal3 <- unite(portal2, col = species_id, c(genus, species), sep = "_", remove = FALSE)
time.by.species <- group_by(portal, year, plot_id) %>% count(species_id) %>% spread(key = species_id, value = n, fill = 0)
```
```{r}
mysbs82=filter(time.by.species,year==1982)
mysbs82strip<-mysbs82[-c(1,2)]
#dat %>% mutate_each_(funs(factor), l1) %>% mutate_each_(funs(as.numeric), l2)
mysbs82strip<- apply(mysbs82strip,2, as.numeric)
#2
my_type<-portal%>%filter(year==1982)%>%group_by(plot_id,plot_type)%>%count(species_id)%>%spread(key = species_id, value = n, fill = 0)
#3
S.obs <- function(x="" ){
rowSums(x>0) *1
}#for each row x, take the sum of columns for which x > 0
SimpE <- function(x = ""){
S <- S.obs(x)#obsvd richness
x = as.data.frame(x)
D <- diversity(x, "inv")
E <- (D)/S
return(E)
}
thuggy<-SimpE(mysbs82strip)
#apply(mysbs82strip,1,SimpE)
thugy<-apply(mysbs82strip,1,diversity)
#4
package.list <- c('vegan', 'ade4', 'viridis', 'gplots', 'BiodiversityR', 'indicspecies')
for (package in package.list) {
if (!require(package, character.only=T, quietly=T)) {
install.packages(package)
library(package, character.only=T)
}
}
portal82.db <- vegdist(mysbs82strip, method = "bray", upper = TRUE, diag = TRUE)
portal82.pcoa <- cmdscale(portal82.db, eig = TRUE, k = 3)#do the PCoA
str(portal82.pcoa)
explainvar1 <- round(portal82.pcoa$eig[1] / sum(portal82.pcoa$eig), 3) * 100#for each of the first three eigenvalues, assess what proportion of variance it explains
explainvar2 <- round(portal82.pcoa$eig[2] / sum(portal82.pcoa$eig), 3) * 100
explainvar3 <- round(portal82.pcoa$eig[3] / sum(portal82.pcoa$eig), 3) * 100
sum.eig <- sum(explainvar1, explainvar2, explainvar3)#total amt explained in these 3 dimensions
par(mar = c(5, 5, 1, 2) + 0.1)#structure the figure output
# Initiate Plot
plot(portal82.pcoa$points[ ,1], portal82.pcoa$points[ ,2], ylim = c(-0.2, 0.7), xlab = paste("PCoA 1 (", explainvar1, "%)", sep = ""), ylab = paste("PCoA 2 (", explainvar2, "%)", sep = ""), pch = 16, cex = 2.0, type = "n", cex.lab = 1.5, cex.axis = 1.2, axes = FALSE)
# Add Axes
axis(side = 1, labels = T, lwd.ticks = 2, cex.axis = 1.2, las = 1)
axis(side = 2, labels = T, lwd.ticks = 2, cex.axis = 1.2, las = 1)
abline(h = 0, v = 0, lty = 3)
box(lwd = 2)
# Add Points & Labels
points(portal82.pcoa$points[ ,1], portal82.pcoa$points[ ,2],
pch = 19, cex = 3, bg = "#bc8d4f", col = "#bc8d4f")
text(portal82.pcoa$points[ ,1], portal82.pcoa$points[ ,2],
labels = row.names(portal82.pcoa$points))
#Now IDfy the most influential spp
portal82REL <- mysbs82strip
for(i in 1:nrow(mysbs82strip)){
portal82REL[i, ] = mysbs82strip[i, ] / sum(mysbs82strip[i, ])
}
portal82.pcoa2 <- add.spec.scores(portal82.pcoa,portal82REL,method = "pcoa.scores")
##################################
#gives error: Error in is.data.frame(x) :
#(list) object cannot be coerced to type 'double'
##############################
text(portal82.pcoa2$cproj[ ,1], portal82.pcoa2$cproj[ ,2],labels = row.names(portal82.pcoa2$cproj), col = "#802944")
portal82.ward <- hclust(portal82.db, method = "ward.D2")#now visualize phylogenetically
par(mar = c(1, 5, 2, 2) + 0.1)#set up display settings
plot(portal82.ward, main = "Ward's Clustering",ylab = "Squared Bray-Curtis Distance")#plot the tree
#5
mytrtmnts<-c(my_type$plot_type)
adonis(mysbs82strip ~ mytrtmnts, method = "bray", permutations = 999)
#P=0.786.
```

***Question 2***: Describe how different biodiversity estimates vary among sites.

a. Does diversity vary among sites? Does this correspond to treatment type?
b. Is treatment type a significant predictor of site dissimilarity?

> ***Answer 2a***:
> ***Answer 2a***:
> Among the sites, Shannon's diversity ranges from 1.0364 to 2.1453.
> Sites 16, 23, 7, 10 all cluster together, and all are Rodent Exclosure treatments.
> Sites 19, 15, 3, 21 all cluster together, and all are LT K-ray Exclosures.
> Sites 14, 4, 11, 12, 5 cluster together; and except 5 are controls.
> Sites 6, 18, 1, 2, 13cluster together; 18, 6, and 13 are all Short-Term K-rat exclosures
> Sites 17 and 20 cluster together, but they are not the same treatment.
> Sites 22, 9, 8 cluster together, but only 22 and 8 are the same treatment.
> Site 24, a Rodent Exclosure, is far distant from the other rodent exclosures.
> ***Answer 2b***:
> No, treatment is not a significant predictor of species composition (P = 0.786).
## 4) TIME SERIES ANALYSIS
In the R code chunk below, do the following:

Expand Down

0 comments on commit 3f4f608

Please sign in to comment.