Skip to content

Rowing0914/offline_policy_evaluation

Repository files navigation

Offline Policy Evaluation: Counterfactual Estimator

This repo is to reproduce the result of Doubly Robust Estimator.

Dataset: ./data/*

Dataset Samples Features Labels
ecoli 336 7 8
glass 214 9 6
letter 20000 16 26
optdigits 5620 64 10
page_blocks 5473 10 5
pendigits 10992 16 10
satimage 6435 36 6
vehicle 846 18 4
yeast 1484 8 10

**All data can be found under UCI's great repositories

Results

  • Bias: ./results/result_bias.txt
  • RMSE: ./results/result_rmse.txt

Usage

  • If Anaconda, please create your env: conda create -n <ENV_NAME> python=3.6.8
  • Get dependencies: pip install -r requirements.txt
  • Run the main file: python main.py

Dependencies

  • Python: 3.6.8
  • Packages: See ./requirements.txt
  • OS: Windows10, MacOS, Ubuntu(18.04/16.04 LTS)

TODO

  • Fuse the evaluation metrics of OPE by Mix and Rank!!

Reference

About

Collection of implementations in Offline Policy Evaluation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages