-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathml_predictor.py
56 lines (42 loc) · 1.73 KB
/
ml_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from data_preparation import MyDataset, ProteinResults
from config import GeneralInformation
import torch
class MLPredictor(object):
def __init__(self, model):
if torch.cuda.is_available():
self.device = 'cuda:0'
else:
self.device = 'cpu'
self.model = model.to(self.device)
def predict_per_protein(self, ids, sequences, embeddings, labels, max_length):
"""
Generate predictions for each protein from a list
:param ids:
:param sequences:
:param embeddings:
:param labels:
:param max_length:
:return:
"""
validation_set = MyDataset(ids, embeddings, sequences, labels, max_length, protein_prediction=True)
validation_loader = torch.utils.data.DataLoader(validation_set, batch_size=1, shuffle=True, pin_memory=True)
sigm = torch.nn.Sigmoid()
proteins = dict()
for features, target, mask, prot_id in validation_loader:
prot_id = prot_id[0]
self.model.eval()
with torch.no_grad():
features = features.to(self.device)
target = target.to(self.device)
features_1024 = features[..., :-1, :]
pred = self.model.forward(features_1024)
pred = sigm(pred)
pred = pred.squeeze()
target = target.squeeze()
features = features.squeeze()
pred_i, target_i = GeneralInformation.remove_padded_positions(pred, target, features)
pred_i = pred_i.detach().cpu()
prot = ProteinResults(prot_id)
prot.set_predictions(pred_i)
proteins[prot_id] = prot
return proteins