Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: disp more results to rocketpy.plots & rocketpy.prints #753

Open
wants to merge 1 commit into
base: develop
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion .vscode/settings.json
Original file line number Diff line number Diff line change
@@ -327,5 +327,8 @@
"zlabel",
"zlim",
"zorder"
]
],
"files.associations": {
"plyconfig.json": "jsonc"
}
Comment on lines +330 to +333
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Unrelated to the issue.

}
24 changes: 18 additions & 6 deletions rocketpy/plots/monte_carlo_plots.py
Original file line number Diff line number Diff line change
@@ -149,7 +149,8 @@ def ellipses(

def all(self, keys=None):
"""
Plot the histograms of the Monte Carlo simulation results.
Plot the histograms with Boxplots & density plots
of the Monte Carlo simulation results.

Parameters
----------
@@ -175,8 +176,19 @@ def all(self, keys=None):
raise ValueError("The 'keys' argument must be a string, list, or tuple.")

for key in keys:
plt.figure()
plt.hist(self.monte_carlo.results[key])
plt.title(f"Histogram of {key}")
plt.ylabel("Number of Occurrences")
plt.show()
figure, plt = plt.subplots(3,1,sharex=True,gridspec_kw={'height_ratios':[1,3]})

plt[0].boxplot(self.monte_carlo.results[key],vert=False)
plt[0].ytick([])

plt[1].hist(self.monte_carlo.results[key])
plt[1].title(f"Histogram of {key}")
plt[1].ylabel("Number of Occurrences")

plt[2].hist(self.monte_carlo.results[key], density=True)
plt[2].title(f" Density {key}")
plt[2].ylabel("Probability Density")
kde = kde.gaussian_kde(self.monte_carlo.results[key])
x_array = np.linspace(min(self.monte_carlo.results[key]), max(self.monte_carlo.results[key]), 100)
plt[2].plot(x_array, kde(x_array), label='KDE')
plt.show()
Comment on lines +179 to +194
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This generates errors when I try to create plot MonteCarlo results. Indeed, you are replacing a global variable, the alias plt for the submodule matplotlib.pyplot for a local variable with the same name. Moreover, where does kde come from? It seems you have not imported it. Finally, I tried to do a quick clean of the errors just to get a gist of how it would look, and it seems that it creates three different plots. As mentioned in the PR, the idea was to create a single plot that blends the three (histogram, boxplot and density plot).

16 changes: 10 additions & 6 deletions rocketpy/prints/monte_carlo_prints.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,14 @@
import numpy as np

class _MonteCarloPrints:
"""Class to print the monte carlo analysis results."""

def __init__(self, monte_carlo):
self.monte_carlo = monte_carlo

def all(self):
"""Print the mean and standard deviation of each parameter in the results
dictionary or of the variables passed as argument.
"""Print the mean, standard deviation, and quantiles (0%, 2.5%, 50%, 97.5%, 100%)
of each parameter in the results dictionary or of the variables passed as argument.

Parameters
----------
@@ -19,12 +21,14 @@ def all(self):
"""
print("Monte Carlo Simulation by RocketPy")
print("Data Source: ", self.monte_carlo.filename)
print("Number of simulations: ", self.monte_carlo.num_of_loaded_sims)
print("Number of Simulations: ", self.monte_carlo.num_of_loaded_sims)
print("Results: \n")
print(f"{'Parameter':>25} {'Mean':>15} {'Std. Dev.':>15}")

print(f"{'Parameter':>25} {'Mean':>15} {'Std. Dev.':>15} {'0% Quant':>15} {'2.5% Quant.':>15} {'50% Quant.':>15} {'97.5% Quant.':>15} {'100% Quant.':>15}")
print("-" * 60)
for key, value in self.monte_carlo.processed_results.items():
try:
print(f"{key:>25} {value[0]:>15.3f} {value[1]:>15.3f}")
pt = self.monte_carlo.results[key]
print (f"{key:>25} {value[0]:>15.3f} {value[1]:>15.3f} {np.quantile(pt,0):>15.3f} {np.quantile(pt,0.025):>15.3f} {np.quantile(pt,0.5):>15.3f} {np.quantile(pt,0.975):>15.3f} {np.quantile(pt,1):>15.3f}")
except TypeError:
print(f"{key:>25} {str(value[0]):>15} {str(value[1]):>15}")
print (f"{key:>25} {str(value[0]):>15} {str(value[1]):>15} {str(np.quantile(pt,0)):>15} {str(np.quantile(pt,0.025)):>15} {str(np.quantile(pt,0.5)):>15} {str(np.quantile(pt,0.975)):>15} {str(np.quantile(pt,1)):>15}")
Comment on lines +31 to +34
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I believe "min" and "max" are way more clear than "0% quantile" and "100% quantile".