Skip to content

GPU Accelerated Gibbs Sampling for Gaussian Mixture Models and Latent Dirichlet Allocation

Notifications You must be signed in to change notification settings

RobRoyce/gpu_accelerated_gibbs_sampling

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Accelerated Gibbs Sampling on Nvidia GPUs

This project is based on an assignment for UCLA's graduate-level course -- Current Topics in Computer Science: System Design/Architecture: Learning Machines.

Building

Useful commands:

  • make -- build project with default configurations
  • make NSAMPLES=n KCLASSES=k -- build project and set parameters
  • make debug -- build project with -G flag for device (kernel) debugging
  • make profile -- build project with --generate-line-info flag to generate line-number info for device code
  • make clean -- runs rm -rf on ./obj and ./bin

https://docs.nvidia.com/cuda/curand/host-api-overview.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

https://docs.nvidia.com/cuda/curand/host-api-overview.html#generator-types

https://scikit-learn.org/stable/modules/mixture.html

https://docs.nvidia.com/cuda/curand/device-api-overview.html#distributions

https://docs.nvidia.com/cuda/curand/device-api-overview.html#poisson-api-example

About

GPU Accelerated Gibbs Sampling for Gaussian Mixture Models and Latent Dirichlet Allocation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Cuda 44.3%
  • C 34.5%
  • Jupyter Notebook 20.8%
  • Other 0.4%