-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
19 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
<!doctype html> | ||
<html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"><meta><title>VAE:变分推断、MC估计和重要性采样 - Rick Universe</title><link rel="manifest" href="/manifest.json"><meta name="application-name" content="Rick Universe"><meta name="msapplication-TileImage" content="/img/agumon.svg"><meta name="apple-mobile-web-app-capable" content="yes"><meta name="apple-mobile-web-app-title" content="Rick Universe"><meta name="apple-mobile-web-app-status-bar-style" content="default"><meta name="description" content="本文将从表征学习的角度以及隐变量模型的角度探讨VAE模型 隐变量的意义 VAE从概率密度估计的角度来说是一种mixture model 基本的高斯混合模型写做: \(p(x) &#x3D; \sum_{i&#x3D;1}^{k} w_i \mathcal{N}(x | \mu_i, \Sigma_i)\) 其中的i是指第i个高斯分布,\(u_i\)和\(\Sigma_i\)指的是第i个高斯分布的"><meta property="og:type" content="blog"><meta property="og:title" content="VAE:变分推断、MC估计和重要性采样"><meta property="og:url" content="https://rickustc.github.io/2024/04/26/VAE%EF%BC%9A%E5%8F%98%E5%88%86%E6%8E%A8%E6%96%AD%E3%80%81MC%E4%BC%B0%E8%AE%A1%E5%92%8C%E9%87%8D%E8%A6%81%E6%80%A7%E9%87%87%E6%A0%B7/"><meta property="og:site_name" content="Rick Universe"><meta property="og:description" content="本文将从表征学习的角度以及隐变量模型的角度探讨VAE模型 隐变量的意义 VAE从概率密度估计的角度来说是一种mixture model 基本的高斯混合模型写做: \(p(x) &#x3D; \sum_{i&#x3D;1}^{k} w_i \mathcal{N}(x | \mu_i, \Sigma_i)\) 其中的i是指第i个高斯分布,\(u_i\)和\(\Sigma_i\)指的是第i个高斯分布的"><meta property="og:locale" content="en_US"><meta property="og:image" content="d:/Blog/blog/source/image/image-20240426131714727.png"><meta property="og:image" content="d:/Blog/blog/source/image/image-20240426152338348.png"><meta property="article:published_time" content="2024-04-25T16:00:00.000Z"><meta property="article:modified_time" content="2024-04-26T07:40:57.099Z"><meta property="article:author" content="Rick Wang"><meta property="article:tag" content="DGM"><meta property="article:tag" content="LVM"><meta property="article:tag" content="VAE"><meta property="twitter:card" content="summary"><meta property="twitter:image:src" content="d:/Blog/blog/source/image/image-20240426131714727.png"><script type="application/ld+json">{"@context":"https://schema.org","@type":"BlogPosting","mainEntityOfPage":{"@type":"WebPage","@id":"https://rickustc.github.io/2024/04/26/VAE%EF%BC%9A%E5%8F%98%E5%88%86%E6%8E%A8%E6%96%AD%E3%80%81MC%E4%BC%B0%E8%AE%A1%E5%92%8C%E9%87%8D%E8%A6%81%E6%80%A7%E9%87%87%E6%A0%B7/"},"headline":"VAE:变分推断、MC估计和重要性采样","image":["d:/Blog/blog/source/image/image-20240426131714727.png","d:/Blog/blog/source/image/image-20240426152338348.png"],"datePublished":"2024-04-25T16:00:00.000Z","dateModified":"2024-04-26T07:40:57.099Z","author":{"@type":"Person","name":"Rick Wang"},"publisher":{"@type":"Organization","name":"Rick Universe","logo":{"@type":"ImageObject","url":"https://rickustc.github.io/img/agumon.svg"}},"description":"本文将从表征学习的角度以及隐变量模型的角度探讨VAE模型\r \r 隐变量的意义\r VAE从概率密度估计的角度来说是一种mixture model\r 基本的高斯混合模型写做:\r \\(p(x) = \\sum_{i=1}^{k} w_i \\mathcal{N}(x |\r \\mu_i, \\Sigma_i)\\)\r 其中的i是指第i个高斯分布,\\(u_i\\)和\\(\\Sigma_i\\)指的是第i个高斯分布的"}</script><link rel="canonical" href="https://rickustc.github.io/2024/04/26/VAE%EF%BC%9A%E5%8F%98%E5%88%86%E6%8E%A8%E6%96%AD%E3%80%81MC%E4%BC%B0%E8%AE%A1%E5%92%8C%E9%87%8D%E8%A6%81%E6%80%A7%E9%87%87%E6%A0%B7/"><link rel="icon" href="/img/agumon.svg"><link rel="stylesheet" href="https://use.fontawesome.com/releases/v6.0.0/css/all.css"><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/styles/atom-one-light.css"><link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=Ubuntu:wght@400;600&family=Source+Code+Pro"><link rel="stylesheet" href="/css/default.css"><style>body>.footer,body>.navbar,body>.section{opacity:0}</style><!--!--><!--!--><!--!--><script src="//busuanzi.ibruce.info/busuanzi/2.3/busuanzi.pure.mini.js" defer></script><!--!--><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/build/cookieconsent.min.css"><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/lightgallery.min.css"><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/justifiedGallery.min.css"><!--!--><!--!--><!--!--><style>.pace{-webkit-pointer-events:none;pointer-events:none;-webkit-user-select:none;-moz-user-select:none;user-select:none}.pace-inactive{display:none}.pace .pace-progress{background:#3273dc;position:fixed;z-index:2000;top:0;right:100%;width:100%;height:2px}</style><script src="https://cdn.jsdelivr.net/npm/[email protected]/pace.min.js"></script><!--!--><!--!--><!-- hexo injector head_end start --> | ||
<html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"><meta><title>VAE:变分推断、MC估计和重要性采样 - Rick Universe</title><link rel="manifest" href="/manifest.json"><meta name="application-name" content="Rick Universe"><meta name="msapplication-TileImage" content="/img/agumon.svg"><meta name="apple-mobile-web-app-capable" content="yes"><meta name="apple-mobile-web-app-title" content="Rick Universe"><meta name="apple-mobile-web-app-status-bar-style" content="default"><meta name="description" content="本文将从表征学习的角度以及隐变量模型的角度探讨VAE模型 隐变量的意义 VAE从概率密度估计的角度来说是一种mixture model 基本的高斯混合模型写做: \(p(x) &#x3D; \sum_{i&#x3D;1}^{k} w_i \mathcal{N}(x | \mu_i, \Sigma_i)\) 其中的i是指第i个高斯分布,\(u_i\)和\(\Sigma_i\)指的是第i个高斯分布的"><meta property="og:type" content="blog"><meta property="og:title" content="VAE:变分推断、MC估计和重要性采样"><meta property="og:url" content="https://rickustc.github.io/2024/04/26/VAE%EF%BC%9A%E5%8F%98%E5%88%86%E6%8E%A8%E6%96%AD%E3%80%81MC%E4%BC%B0%E8%AE%A1%E5%92%8C%E9%87%8D%E8%A6%81%E6%80%A7%E9%87%87%E6%A0%B7/"><meta property="og:site_name" content="Rick Universe"><meta property="og:description" content="本文将从表征学习的角度以及隐变量模型的角度探讨VAE模型 隐变量的意义 VAE从概率密度估计的角度来说是一种mixture model 基本的高斯混合模型写做: \(p(x) &#x3D; \sum_{i&#x3D;1}^{k} w_i \mathcal{N}(x | \mu_i, \Sigma_i)\) 其中的i是指第i个高斯分布,\(u_i\)和\(\Sigma_i\)指的是第i个高斯分布的"><meta property="og:locale" content="en_US"><meta property="og:image" content="d:/Blog/blog/source/image/image-20240426131714727.png"><meta property="og:image" content="d:/Blog/blog/source/image/image-20240426152338348.png"><meta property="article:published_time" content="2024-04-25T16:00:00.000Z"><meta property="article:modified_time" content="2024-04-26T07:48:15.146Z"><meta property="article:author" content="Rick Wang"><meta property="article:tag" content="DGM"><meta property="article:tag" content="LVM"><meta property="article:tag" content="VAE"><meta property="twitter:card" content="summary"><meta property="twitter:image:src" content="d:/Blog/blog/source/image/image-20240426131714727.png"><script type="application/ld+json">{"@context":"https://schema.org","@type":"BlogPosting","mainEntityOfPage":{"@type":"WebPage","@id":"https://rickustc.github.io/2024/04/26/VAE%EF%BC%9A%E5%8F%98%E5%88%86%E6%8E%A8%E6%96%AD%E3%80%81MC%E4%BC%B0%E8%AE%A1%E5%92%8C%E9%87%8D%E8%A6%81%E6%80%A7%E9%87%87%E6%A0%B7/"},"headline":"VAE:变分推断、MC估计和重要性采样","image":["d:/Blog/blog/source/image/image-20240426131714727.png","d:/Blog/blog/source/image/image-20240426152338348.png"],"datePublished":"2024-04-25T16:00:00.000Z","dateModified":"2024-04-26T07:48:15.146Z","author":{"@type":"Person","name":"Rick Wang"},"publisher":{"@type":"Organization","name":"Rick Universe","logo":{"@type":"ImageObject","url":"https://rickustc.github.io/img/agumon.svg"}},"description":"本文将从表征学习的角度以及隐变量模型的角度探讨VAE模型\r \r 隐变量的意义\r VAE从概率密度估计的角度来说是一种mixture model\r 基本的高斯混合模型写做:\r \\(p(x) = \\sum_{i=1}^{k} w_i \\mathcal{N}(x |\r \\mu_i, \\Sigma_i)\\)\r 其中的i是指第i个高斯分布,\\(u_i\\)和\\(\\Sigma_i\\)指的是第i个高斯分布的"}</script><link rel="canonical" href="https://rickustc.github.io/2024/04/26/VAE%EF%BC%9A%E5%8F%98%E5%88%86%E6%8E%A8%E6%96%AD%E3%80%81MC%E4%BC%B0%E8%AE%A1%E5%92%8C%E9%87%8D%E8%A6%81%E6%80%A7%E9%87%87%E6%A0%B7/"><link rel="icon" href="/img/agumon.svg"><link rel="stylesheet" href="https://use.fontawesome.com/releases/v6.0.0/css/all.css"><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/styles/atom-one-light.css"><link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=Ubuntu:wght@400;600&family=Source+Code+Pro"><link rel="stylesheet" href="/css/default.css"><style>body>.footer,body>.navbar,body>.section{opacity:0}</style><!--!--><!--!--><!--!--><script src="//busuanzi.ibruce.info/busuanzi/2.3/busuanzi.pure.mini.js" defer></script><!--!--><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/build/cookieconsent.min.css"><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/lightgallery.min.css"><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/justifiedGallery.min.css"><!--!--><!--!--><!--!--><style>.pace{-webkit-pointer-events:none;pointer-events:none;-webkit-user-select:none;-moz-user-select:none;user-select:none}.pace-inactive{display:none}.pace .pace-progress{background:#3273dc;position:fixed;z-index:2000;top:0;right:100%;width:100%;height:2px}</style><script src="https://cdn.jsdelivr.net/npm/[email protected]/pace.min.js"></script><!--!--><!--!--><!-- hexo injector head_end start --> | ||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css"> | ||
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/style.css"> | ||
|
@@ -33,7 +33,7 @@ | |
switchTab(); | ||
window.addEventListener('hashchange', switchTab, false); | ||
})(); | ||
</script><!-- hexo injector head_end end --><meta name="generator" content="Hexo 6.3.0"></head><body class="is-3-column"><nav class="navbar navbar-main"><div class="container navbar-container"><div class="navbar-brand justify-content-center"><a class="navbar-item navbar-logo" href="/"><img src="/img/agumon.svg" alt="Rick Universe" height="28"></a></div><div class="navbar-menu"><div class="navbar-start"><a class="navbar-item" href="/rick">RICK UNIVERSE</a><a class="navbar-item" href="/curriculum">Curriculum</a><a class="navbar-item" href="/">BLOG</a><a class="navbar-item" href="/life">LIFE</a><a class="navbar-item" href="/archives">ARCHIVES</a><a class="navbar-item" href="/categories">CATEGORIES</a><a class="navbar-item" href="/tags">TAGS</a><a class="navbar-item" href="/about">ABOUT</a></div><div class="navbar-end"><a class="navbar-item" target="_blank" rel="noopener" title="Download on GitHub" href="https://github.com/ppoffice/hexo-theme-icarus"><i class="fab fa-github"></i></a><a class="navbar-item search" title="Search" href="javascript:;"><i class="fas fa-search"></i></a></div></div></div></nav><section class="section"><div class="container"><div class="columns"><div class="column order-2 column-main is-8-tablet is-8-desktop is-6-widescreen"><div class="card"><article class="card-content article" role="article"><div class="article-meta is-size-7 is-uppercase level is-mobile"><div class="level-left"><span class="level-item">Posted <time dateTime="2024-04-25T16:00:00.000Z" title="2024/4/26上午12:00:00">2024-04-26</time></span><span class="level-item">Updated <time dateTime="2024-04-26T07:40:57.099Z" title="2024/4/26下午3:40:57">2024-04-26</time></span><span class="level-item">9 minutes read (About 1325 words)</span><span class="level-item" id="busuanzi_container_page_pv"><span id="busuanzi_value_page_pv">0</span> visits</span></div></div><h1 class="title is-3 is-size-4-mobile">VAE:变分推断、MC估计和重要性采样</h1><div class="content"><blockquote> | ||
</script><!-- hexo injector head_end end --><meta name="generator" content="Hexo 6.3.0"></head><body class="is-3-column"><nav class="navbar navbar-main"><div class="container navbar-container"><div class="navbar-brand justify-content-center"><a class="navbar-item navbar-logo" href="/"><img src="/img/agumon.svg" alt="Rick Universe" height="28"></a></div><div class="navbar-menu"><div class="navbar-start"><a class="navbar-item" href="/rick">RICK UNIVERSE</a><a class="navbar-item" href="/curriculum">Curriculum</a><a class="navbar-item" href="/">BLOG</a><a class="navbar-item" href="/life">LIFE</a><a class="navbar-item" href="/archives">ARCHIVES</a><a class="navbar-item" href="/categories">CATEGORIES</a><a class="navbar-item" href="/tags">TAGS</a><a class="navbar-item" href="/about">ABOUT</a></div><div class="navbar-end"><a class="navbar-item" target="_blank" rel="noopener" title="Download on GitHub" href="https://github.com/ppoffice/hexo-theme-icarus"><i class="fab fa-github"></i></a><a class="navbar-item search" title="Search" href="javascript:;"><i class="fas fa-search"></i></a></div></div></div></nav><section class="section"><div class="container"><div class="columns"><div class="column order-2 column-main is-8-tablet is-8-desktop is-6-widescreen"><div class="card"><article class="card-content article" role="article"><div class="article-meta is-size-7 is-uppercase level is-mobile"><div class="level-left"><span class="level-item">Posted <time dateTime="2024-04-25T16:00:00.000Z" title="2024/4/26上午12:00:00">2024-04-26</time></span><span class="level-item">Updated <time dateTime="2024-04-26T07:48:15.146Z" title="2024/4/26下午3:48:15">2024-04-26</time></span><span class="level-item">9 minutes read (About 1336 words)</span><span class="level-item" id="busuanzi_container_page_pv"><span id="busuanzi_value_page_pv">0</span> visits</span></div></div><h1 class="title is-3 is-size-4-mobile">VAE:变分推断、MC估计和重要性采样</h1><div class="content"><blockquote> | ||
<p>本文将从表征学习的角度以及隐变量模型的角度探讨VAE模型</p> | ||
</blockquote> | ||
<h1 id="隐变量的意义">隐变量的意义</h1> | ||
|
@@ -124,12 +124,12 @@ <h1 id="隐变量的意义">隐变量的意义</h1> | |
<figure> | ||
<img | ||
src="D:\Blog\blog\source\image\image-20240426152256850-1714116180351-5.png" | ||
alt="image-20240426152256850" /> | ||
title="高斯混合模型" alt="image-20240426152256850" /> | ||
<figcaption aria-hidden="true">image-20240426152256850</figcaption> | ||
</figure> | ||
<figure> | ||
<img src="D:\Blog\blog\source\image\image-20240426152338348.png" | ||
alt="image-20240426152338348" /> | ||
title="重要性采样" alt="image-20240426152338348" /> | ||
<figcaption aria-hidden="true">image-20240426152338348</figcaption> | ||
</figure> | ||
<p>在重要性采样的语境下,<span | ||
|
Oops, something went wrong.