Ronghao Dang, Zhuofan Shi, Liuyi Wang, Zongtao He, Chengju Liu, Qijun Chen (Accepted by ACMMM 2022)
We explore the object attention bias problem in object navigation task. Therefore, we propose the DOA graph and novel cross-attention method to solve the problem. Our overall model achieves a SOTA level.
- Clone the repository
git clone http://github.com/gold-d/DOA.git
and move into the top level directorycd DOA
- Create conda environment.
pip install -r requirements.txt
- Download the dataset, which refers to ECCV-VN. The offline data is discretized from AI2-Thor simulator.
- Download the pretrain dataset, which refers to VTNet.
The
data
folder should look like this
data/
└── Scene_Data/
├── FloorPlan1/
│ ├── resnet18_featuremap.hdf5
│ ├── graph.json
│ ├── visible_object_map_1.5.json
│ ├── det_feature_categories.hdf5
│ ├── grid.json
│ └── optimal_action.json
├── FloorPlan2/
└── ...
└── AI2Thor_VisTrans_Pretrain_Data/
├── data/
├── annotation_train.json
├── annotation_val.json
└── annotation_test.json
python main_pretraining.py --title DOA_Pretrain --model DOA_Pretrain --workers 9 --gpu-ids 0 --epochs 20 --log-dir runs/pretrain --save-model-dir trained_models/pretrain
python main.py --title DOA --model DOA --workers 9 --gpu-ids 0 --max-ep 3000000 --log-dir runs/RL_train --save-model-dir trained_models/RL_train --pretrained-trans trained_models/pretrain/checkpoint0004.pth
python full_eval.py --title DOA --model DOA --results-json eval_best_results/DOA.json --gpu-ids 0 --log-dir runs/RL_train --save-model-dir trained_models/RL_train
If you find this project useful in your research, please consider citing:
@article{dang2022unbiased,
title={Unbiased Directed Object Attention Graph for Object Navigation},
author={Dang, Ronghao and Shi, Zhuofan and Wang, Liuyi and He, Zongtao and Liu, Chengju and Chen, Qijun},
journal={arXiv preprint arXiv:2204.04421},
year={2022}
}