Skip to content
/ DOA Public

Unbiased Directed Object Attention Graph for Object Navigation

License

Notifications You must be signed in to change notification settings

Rh-Dang/DOA

Repository files navigation

Unbiased Directed Object Attention Graph for Object Navigation

Ronghao Dang, Zhuofan Shi, Liuyi Wang, Zongtao He, Chengju Liu, Qijun Chen (Accepted by ACMMM 2022)

Arxiv Paper

Abstract

We explore the object attention bias problem in object navigation task. Therefore, we propose the DOA graph and novel cross-attention method to solve the problem. Our overall model achieves a SOTA level.

Setup

  • Clone the repository git clone http://github.com/gold-d/DOA.git and move into the top level directory cd DOA
  • Create conda environment. pip install -r requirements.txt
  • Download the dataset, which refers to ECCV-VN. The offline data is discretized from AI2-Thor simulator.
  • Download the pretrain dataset, which refers to VTNet. The data folder should look like this
data/ 
    └── Scene_Data/
        ├── FloorPlan1/
        │   ├── resnet18_featuremap.hdf5
        │   ├── graph.json
        │   ├── visible_object_map_1.5.json
        │   ├── det_feature_categories.hdf5
        │   ├── grid.json
        │   └── optimal_action.json
        ├── FloorPlan2/
        └── ...
    └── AI2Thor_VisTrans_Pretrain_Data/
        ├── data/
        ├── annotation_train.json
        ├── annotation_val.json
        └── annotation_test.json

Training and Evaluation

Pre-train our DOA model

python main_pretraining.py --title DOA_Pretrain --model DOA_Pretrain --workers 9 --gpu-ids 0 --epochs 20 --log-dir runs/pretrain --save-model-dir trained_models/pretrain

Train our DOA model

python main.py --title DOA --model DOA --workers 9 --gpu-ids 0 --max-ep 3000000 --log-dir runs/RL_train --save-model-dir trained_models/RL_train --pretrained-trans trained_models/pretrain/checkpoint0004.pth

Evaluate our DOA model

python full_eval.py --title DOA --model DOA --results-json eval_best_results/DOA.json --gpu-ids 0 --log-dir runs/RL_train --save-model-dir trained_models/RL_train

Citing

If you find this project useful in your research, please consider citing:

@article{dang2022unbiased,
  title={Unbiased Directed Object Attention Graph for Object Navigation},
  author={Dang, Ronghao and Shi, Zhuofan and Wang, Liuyi and He, Zongtao and Liu, Chengju and Chen, Qijun},
  journal={arXiv preprint arXiv:2204.04421},
  year={2022}
}

About

Unbiased Directed Object Attention Graph for Object Navigation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages