-
download the database you need and put it under ./data, e.g. ./data/LIVE/fastfading ...
LIVE (release2 recommended): http://live.ece.utexas.edu/research/Quality/subjective.htm
-
specify
datainfo
andim_dir
inconfig.yaml
-
make directory ‘logger’
CUDA_VISIBLE_DEVICES=0 python main.py --model='resnet18' --database='LIVE'
-
Train/Val/Test split ratio in intra-database experiments can be set in
config.yaml
(default is 0.6/0.2/0.2). -
Compare different models' performance:
Input an image and output its IQA score
run:
python test_demo.py --im_path=data/images/test_images/blur.jpg --model_file=models/resnet18-LIVE
-
--im_path: put your test image in the folder -- data/test_images
-
--model_file: choose your trained model, the pre-trained resnet18-LIVE model is given
In the server (host:port):
tensorboard --logdir=tensorboard_logs --port=6006
e.g. put the dpai-11 file in logger/test_log, run:
tensorboard --logdir="./logger/test_log" --port=6006
In your PC:
ssh -p port -L 6006:localhost:6006 user@host
- localhost: localhost's IP address
- user: user's name in host
- host: host's IP address
See the visualization in your PC:
Enter localhost:16006 in the browser
See IQA Distortion Classification and Reconstruction System
conda create -n reproducibleresearch pip python=3.6
source activate reproducibleresearch
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
source deactive
- Python 3.6.8
- PyTorch 1.7.0
- TensorboardX 1.9, TensorFlow 2.0.0
- pytorch/ignite 0.2.1
Note: You need to install the right CUDA version.