Skip to content

Using multiple models (CNN, LeNet-5, ResNet, VGG) to implement IQA and compare their performance

Notifications You must be signed in to change notification settings

RainFZY/Image-Quality-Assessment-By-Multiple-Models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image Quality Assessment by Mutiple Models

Prepare

  1. download the database you need and put it under ./data, e.g. ./data/LIVE/fastfading ...

    LIVE (release2 recommended): http://live.ece.utexas.edu/research/Quality/subjective.htm

    tid2008: http://www.ponomarenko.info/tid2008.htm

    tid2013: http://www.ponomarenko.info/tid2013.htm

  2. specify datainfo andim_dir in config.yaml

  3. make directory ‘logger’

Training

CUDA_VISIBLE_DEVICES=0 python main.py --model='resnet18' --database='LIVE'
  • Train/Val/Test split ratio in intra-database experiments can be set in config.yaml (default is 0.6/0.2/0.2).

  • Compare different models' performance:

Test Demo

Input an image and output its IQA score

run:

python test_demo.py --im_path=data/images/test_images/blur.jpg --model_file=models/resnet18-LIVE
  • --im_path: put your test image in the folder -- data/test_images

  • --model_file: choose your trained model, the pre-trained resnet18-LIVE model is given

Visualization

In the server (host:port):

tensorboard --logdir=tensorboard_logs --port=6006

e.g. put the dpai-11 file in logger/test_log, run:

tensorboard --logdir="./logger/test_log" --port=6006

In your PC:

ssh -p port -L 6006:localhost:6006 user@host
  • localhost: localhost's IP address
  • user: user's name in host
  • host: host's IP address

See the visualization in your PC:

Enter localhost:16006 in the browser

Application

See IQA Distortion Classification and Reconstruction System

Requirements

conda create -n reproducibleresearch pip python=3.6
source activate reproducibleresearch
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
source deactive

Note: You need to install the right CUDA version.

About

Using multiple models (CNN, LeNet-5, ResNet, VGG) to implement IQA and compare their performance

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages