forked from openxla/xla
-
Notifications
You must be signed in to change notification settings - Fork 2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add CudnnPadForConvolutions and CudnnVecotrizeConvolutions HLO pass #4
Open
hsharsha
wants to merge
11
commits into
main
Choose a base branch
from
ci_convbf16_20240305
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+228
−37
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hsharsha
force-pushed
the
ci_convbf16_20240305
branch
from
March 7, 2024 19:08
8f57a81
to
01f31a5
Compare
draganmladjenovic
pushed a commit
that referenced
this pull request
Mar 26, 2024
Currently we look for ptxas and nvlink in a few different places on the host machine, then we choose the first found binary without taking its version into account. If the chosen binary doesn't fulfill our version requirements we will later fail even if there was a suitable ptxas or nvlink in the search path in the first place. This change makes it take the version of each binary into account when going through the search path. Unsuitable binaries will be discarded right away and the search continues until we are out of locations to check. This should help with host environments that have multiple CUDA toolkits installed and should make ptxas and nvlink selection more robust. The concreate changes: 1. `FindCudaExecutable` now also takes a minimum version and a list of forbidden (think buggy) versions that are supposed to be skipped. 2. `WarnIfBadPtxAsVersion` has been removed. It was checking for ptxas < 11.1 which is way older than our minimum supported version of 11.8 and was not doing anything given the check described in #3. 3. There was another version check for `ptxas` in `NVPTXCompiler::ChooseLinkingMethod` which was checking for `version(ptxas)` < 11.8. This has also been removed/replace by the version check described in #4. 4. Version checking for `ptxas` and `nvlink` has been consolidated into 2 methods `FindPtxAsExectuable` and `FindNvLinkExecutable`. These methods hard code the current minimum version (and the list of excluded versions) of each tool in one place. It's still not great but at least less spaghetti-like. PiperOrigin-RevId: 618797392
ekuznetsov139
pushed a commit
that referenced
this pull request
May 13, 2024
…d phase to Initialize() Imported from GitHub PR openxla#12228 The first time that a NormThunk is executed, it will build a cudnn execution plan. This build step can hang if a NCCL collective is running at the same time. To fix this, I've moved the build step to take place during thunk initialization. We only observe this hang when using cudnn 9. Here's a backtrace from the hang that will be fixed: ``` Thread 585 (Thread 0x7fb9391ff640 (LWP 41364) "main.py"): #0 0x00007fd3d17cffd9 in ?? () from /lib/x86_64-linux-gnu/libc.so.6 #1 0x00007fd3d17da24f in pthread_rwlock_wrlock () from /lib/x86_64-linux-gnu/libc.so.6 #2 0x00007fd070967dfe in ?? () from /lib/x86_64-linux-gnu/libcuda.so.1 #3 0x00007fd0709c928a in ?? () from /lib/x86_64-linux-gnu/libcuda.so.1 #4 0x00007f1970d76102 in ?? () from /lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0 #5 0x00007f1970f2c999 in ?? () from /lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0 #6 0x00007f1970a7d4ab in ?? () from /lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0 #7 0x00007f1970d0a9cb in ?? () from /lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0 #8 0x00007fce60b2a98c in cudnn::backend::ExecutionPlan::finalize_internal() () from /lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0 #9 0x00007fce60aefbb1 in cudnn::backend::Descriptor::finalize() () from /lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0 #10 0x00007fce60b15bec in cudnnBackendFinalize () from /lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0 #11 0x00007fd2521b8f39 in cudnn_frontend::ExecutionPlanBuilder_v8::build() () from /usr/local/lib/python3.10/dist-packages/jaxlib/xla_extension.so #12 0x00007fd2521734ba in stream_executor::gpu::(anonymous namespace)::GetExecPlanFromHeuristics(cudnn_frontend::OperationGraph_v8&&, stream_executor::gpu::(anonymous namespace)::CudnnHandle const&, bool) () from /usr/local/lib/python3.10/dist-packages/jaxlib/xla_extension.so #13 0x00007fd25216ff9b in stream_executor::gpu::CudnnSupport::NormRunnerFromDesc(stream_executor::Stream*, stream_executor::dnn::AlgorithmDesc const&, stream_executor::dnn::NormKind, double, stream_executor::dnn::TensorDescriptor const&, stream_executor::dnn::TensorDescriptor const&, stream_executor::dnn::TensorDescriptor const&, std::optional<stream_executor::dnn::TensorDescriptor>, std::optional<stream_executor::dnn::TensorDescriptor>, std::optional<stream_executor::dnn::TensorDescriptor>, std::optional<stream_executor::dnn::TensorDescriptor>, std::optional<stream_executor::dnn::TensorDescriptor>, std::optional<stream_executor::dnn::TensorDescriptor>) () from /usr/local/lib/python3.10/dist-packages/jaxlib/xla_extension.so #14 0x00007fd24e36b88b in stream_executor::dnn::NormOp::RunnerFromAlgorithmDesc(stream_executor::dnn::AlgorithmDesc const&, stream_executor::dnn::NormOp::Config, stream_executor::Stream*) () from /usr/local/lib/python3.10/dist-packages/jaxlib/xla_extension.so #15 0x00007fd24e36ae37 in stream_executor::dnn::LazyOpRunner<stream_executor::dnn::NormOp>::GetOrCreateRunner(stream_executor::dnn::NormOp::Config, stream_executor::Stream*)::{lambda()#1}::operator()() const () from /usr/local/lib/python3.10/dist-packages/jaxlib/xla_extension.so #16 0x00007fd24e36adbc in void absl::lts_20230802::base_internal::CallOnceImpl<stream_executor::dnn::LazyOpRunner<stream_executor::dnn::NormOp>::GetOrCreateRunner(stream_executor::dnn::NormOp::Config, stream_executor::Stream*)::{lambda()#1}>(std::atomic<unsigned int>*, absl::lts_20230802::base_internal::SchedulingMode, stream_executor::dnn::LazyOpRunner<stream_executor::dnn::NormOp>::GetOrCreateRunner(stream_executor::dnn::NormOp::Config, stream_executor::Stream*)::{lambda()#1}&&) () from /usr/local/lib/python3.10/dist-packages/jaxlib/xla_extension.so #17 0x00007fd24e36a9bd in stream_executor::dnn::LazyOpRunner<stream_executor::dnn::NormOp>::GetOrCreateRunner(stream_executor::dnn::NormOp::Config, stream_executor::Stream*) () from /usr/local/lib/python3.10/dist-packages/jaxlib/xla_extension.so #18 0x00007fd24e369d29 in xla::gpu::RunGpuNorm(xla::gpu::GpuNormConfig const&, stream_executor::DeviceMemoryBase const&, stream_executor::DeviceMemoryBase const&, stream_executor::DeviceMemoryBase const&, std::optional<stream_executor::DeviceMemoryBase>, std::optional<stream_executor::DeviceMemoryBase>, std::optional<stream_executor::DeviceMemoryBase>, std::optional<stream_executor::DeviceMemoryBase>, std::optional<stream_executor::DeviceMemoryBase>, std::optional<stream_executor::DeviceMemoryBase>, stream_executor::DeviceMemoryBase const&, stream_executor::Stream*, xla::gpu::RunNormOptions) () from /usr/local/lib/python3.10/dist-packages/jaxlib/xla_extension.so #19 0x00007fd24e368be6 in xla::gpu::NormThunk::ExecuteOnStream(xla::gpu::Thunk::ExecuteParams const&) () from /usr/local/lib/python3.10/dist-packages/jaxlib/xla_extension.so ``` Copybara import of the project: -- f535330 by Trevor Morris <[email protected]>: Fix hang with cudnn layer norm by moving cudnn init to Initialize() Merging this change closes openxla#12228 COPYBARA_INTEGRATE_REVIEW=openxla#12228 from trevor-m:tmorris-norm-init f535330 PiperOrigin-RevId: 633220207
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.