-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #35 from RECETOX/wverastegui/issue34
Scripts for paper's plots
- Loading branch information
Showing
17 changed files
with
1,417 additions
and
248 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import pandas as pd | ||
from matchms.logging_functions import set_matchms_logger_level | ||
|
||
from utils import append_classes, load_spectra_metadata, normalize_df | ||
from plotting import scatterplot_matplotlib | ||
|
||
set_matchms_logger_level('ERROR') | ||
|
||
matchms_scores = pd.read_csv("../data/output_matching/matchms/matchms_tol_0.0035_1%I_all_peaks_with_0s_only_matching.tsv", sep="\t") | ||
matchms_scores.rename(columns={'CosineHungarian_0.0035_0.0_1.0_scores': 'scores'}, inplace=True) | ||
matchms_scores.rename(columns={'CosineHungarian_0.0035_0.0_1.0_matches': 'matches'}, inplace=True) | ||
|
||
_ , spectra_metadata, _ = load_spectra_metadata("../data/filtered/simulated_matchms_filter_1%I_all_peaks.msp", 'query') | ||
_ , reference_spectra_metadata, _ = load_spectra_metadata("../data/experimental/RECETOX_GC-EI_MS_20201028.msp", 'reference') | ||
|
||
merged = matchms_scores.merge(spectra_metadata, on="query", how="inner") | ||
merged.rename(columns={'num_peaks': 'n_peaks_query'}, inplace=True) | ||
|
||
merged = merged.merge(reference_spectra_metadata, on="reference", how="inner") | ||
merged.rename(columns={'num_peaks': 'n_peaks_reference'}, inplace=True) | ||
|
||
numeric_columns = ['matches', 'n_peaks_query', 'n_peaks_reference'] | ||
merged[numeric_columns] = merged[numeric_columns].apply(pd.to_numeric, errors='coerce') | ||
|
||
merged['FractionQuery'] = merged['matches'] / merged['n_peaks_query'] | ||
merged['FractionReference'] = merged['matches'] / merged['n_peaks_reference'] | ||
|
||
merged = append_classes(merged, "query") | ||
|
||
# Create a scatter plot | ||
scatterplot_matplotlib(normalize_df(merged, matches_norm_col=None)).savefig("paper_plots/Fig2_scatterplot.png", bbox_inches='tight') | ||
# plot name in the manuscript: | ||
# "20240517_scatterplot.png" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
import pandas as pd | ||
from matplotlib import pyplot as plt | ||
|
||
from utils import * | ||
from plotting import * | ||
|
||
matchms_scores = load_matchms_scores() | ||
|
||
df = normalize_df(matchms_scores, matches_norm_col=None) | ||
del df['peak_comments'] | ||
|
||
matches_col = 'matches' | ||
scores_col = 'scores' | ||
|
||
df['matches_norm_query'] = df[matches_col] / df['n_peaks_query'] | ||
df['matches_norm_reference'] = df[matches_col] / df['n_peaks_reference'] | ||
|
||
properties = [ | ||
'scores', | ||
'matches', | ||
'matches_norm_query', | ||
'matches_norm_reference', | ||
'molecular_flexibility', | ||
'rotatable_bonds', | ||
'stereo_centers', | ||
'molecular_complexity', | ||
'n_atoms', | ||
'precursor_mz', | ||
'electronegative_atoms', | ||
'aromatic_nitrogens', | ||
'amines', | ||
'amides', | ||
] | ||
|
||
# Assuming `df` is your DataFrame | ||
corr = df[properties].corr().round(2) | ||
|
||
plt.figure(figsize=(24, 20)) | ||
cax = sns.heatmap(corr, annot=True, cmap='coolwarm', center=0, vmin=-1, vmax=1,annot_kws={"size": 20}) | ||
# plt.title('Pearson Correlations') | ||
plt.tick_params(axis='both', which='major', labelsize=20) | ||
# Get the colorbar from the HeatMap and set the fontsize for its tick labels | ||
cbar = cax.collections[0].colorbar | ||
cbar.ax.tick_params(labelsize=20) | ||
|
||
plt.savefig("paper_plots/Fig3_correlations.png", bbox_inches='tight') | ||
# plot name in the manuscript: | ||
# "correlations/20240517_heatmap_properties_correlations.png" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import pandas as pd | ||
import os | ||
import numpy as np | ||
import math | ||
from matplotlib import pyplot as plt | ||
from rdkit import Chem | ||
import plotly.graph_objs as go | ||
from plotly.subplots import make_subplots | ||
|
||
from utils import * | ||
from plotting import * | ||
|
||
matchms_scores = load_matchms_scores() | ||
|
||
matchms_scores_superclass = preprocess_data(normalize_df(matchms_scores.copy()), ["superclass"]) | ||
larger_superclasses = matchms_scores_superclass.groupby("superclass").filter(lambda x: len(x) > 2) | ||
create_plot(larger_superclasses, "superclass", normalized_matches=True).savefig("paper_plots/Fig4a_superclasses_boxplot.png", bbox_inches='tight') | ||
# plot name in the manuscript: "superclasses/20240207_boxplot_superclasses.png" | ||
|
||
matches_normalized = matchms_scores['matches'] / matchms_scores['n_peaks_reference'] | ||
plt.clf() | ||
plt.set_cmap('viridis') | ||
plt.hist2d(matches_normalized * 100, matchms_scores['scores'] * 1000, bins=(5, 5), range=[[0, 100], [0, 1000]]) | ||
plt.colorbar() | ||
plt.clim(0, 70) | ||
plt.xlabel('ions matching reference (%)', fontsize=20) | ||
plt.ylabel('scores', fontsize=20) | ||
plt.tick_params(labelsize=13) | ||
plt.gcf().set_size_inches(8, 6) | ||
plt.savefig("paper_plots/Fig4a_superclasses_histogram.png", bbox_inches='tight') | ||
|
||
|
||
matchms_scores_top5 = pd.read_csv("../data/output_matching/matchms/matchms_tol_0.0035_1%I_top5_with_0s_only_matching.tsv", sep="\t") | ||
matchms_scores_top5.rename(columns={'CosineHungarian_0.0035_0.0_1.0_scores': 'scores'}, inplace=True) | ||
matchms_scores_top5.rename(columns={'CosineHungarian_0.0035_0.0_1.0_matches': 'matches'}, inplace=True) | ||
matchms_scores_top5 = append_classes(matchms_scores_top5, 'query') | ||
matchms_scores_top5 = append_spectrum_metadata(matchms_scores_top5) | ||
|
||
matchms_scores_superclass_top5 = preprocess_data(normalize_df(matchms_scores_top5.copy(), matches_norm_col=None), ["superclass"]) | ||
larger_superclasses_top5 = matchms_scores_superclass_top5.groupby("superclass").filter(lambda x: len(x) > 2) | ||
create_plot(larger_superclasses_top5, "superclass", normalized_matches=False).savefig("paper_plots/Fig4b_superclasses_boxplot.png", bbox_inches='tight') | ||
# plot name in the manuscript: "superclasses/20240223_boxplot_superclasses_top5.png" | ||
|
||
plt.clf() | ||
plt.set_cmap('viridis') | ||
plt.hist2d(matchms_scores_top5['matches'], matchms_scores_top5['scores'] * 1000, bins=([0,1,2,3,4,5], 5)) | ||
plt.colorbar() | ||
plt.clim(0, 70) | ||
|
||
plt.xlabel('ion matches', fontsize=20) | ||
plt.ylabel('scores', fontsize=20) | ||
plt.tick_params(labelsize=13) | ||
plt.gcf().set_size_inches(8, 6) | ||
plt.savefig("paper_plots/Fig4b_superclasses_histogram.png", bbox_inches='tight') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
import pandas as pd | ||
import os | ||
import numpy as np | ||
import math | ||
from matplotlib import pyplot as plt | ||
from rdkit import Chem | ||
import plotly.graph_objs as go | ||
from plotly.subplots import make_subplots | ||
|
||
from utils import * | ||
from plotting import * | ||
|
||
|
||
matchms_scores = load_matchms_scores() | ||
merged = normalize_df(matchms_scores.copy()) | ||
|
||
scores_preprocessed_hierarchy = preprocess_data(merged, ["superclass", "class", "subclass"]) | ||
grouped_superclass = scores_preprocessed_hierarchy.groupby("superclass") | ||
grouping = "class" | ||
|
||
for group in grouped_superclass.groups: | ||
grp = grouped_superclass.get_group(group).groupby(grouping).filter(lambda x: len(x) > 2) | ||
if len(grp) > 0: | ||
fig = create_plot(grp, grouping, showlegend=False, hide_labels=True) | ||
fig.savefig(f"paper_plots/Fig5_{group}.png", bbox_inches='tight') | ||
# plot name in the manuscript in that order: | ||
# "classes/20240207_boxplot_benzenoids.png" | ||
# "classes/20240207_boxplot_lipids.png" | ||
# "classes/20240207_boxplot_organic_acids.png" | ||
# "classes/20240207_boxplot_organooxygen.png" | ||
# "classes/20240207_boxplot_organohalogen.png" | ||
# "classes/20240207_boxplot_organoheterocyclic.png" | ||
# "classes/20240207_boxplot_phenylpropanoids.png" | ||
|
23 changes: 23 additions & 0 deletions
23
analysis/Python_scripts/Fig6_benzene_subclasses_boxplot.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
import numpy as np | ||
import math | ||
from matplotlib import pyplot as plt | ||
from rdkit import Chem | ||
import plotly.graph_objs as go | ||
from plotly.subplots import make_subplots | ||
|
||
from utils import * | ||
from plotting import * | ||
|
||
|
||
matchms_scores = load_matchms_scores() | ||
merged = normalize_df(matchms_scores.copy()) | ||
|
||
scores_preprocessed_hierarchy = preprocess_data(merged, ["superclass", "class", "subclass"]) | ||
|
||
grouped_class = scores_preprocessed_hierarchy.groupby("class") | ||
grouping = "subclass" | ||
for group in grouped_class.groups: | ||
grp = grouped_class.get_group(group).groupby(grouping).filter(lambda x: len(x) > 6) | ||
if len(grp) > 0 and group == "Benzene and substituted derivatives": | ||
fig = create_plot(grp, grouping, showlegend=False, hide_labels=True) | ||
fig.savefig(f"paper_plots/Fig6_benzene_subclasses.png", bbox_inches='tight') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
from utils import * | ||
from plotting import boxplot_comparison | ||
|
||
matchms_scores = load_matchms_scores() | ||
merged_all_peaks_same = normalize_df(matchms_scores) | ||
mdf_comp = preprocess_data(merged_all_peaks_same, ["composition"]) | ||
|
||
baseline_cols= ['C,H', 'C,H,O', 'C,H,O,S', 'C,Cl,H,O', 'Br,C,H,O', 'C,Cl,H', 'C,Cl,H,O,S', 'C,Cl,F,H,O', 'C,H,O,P', 'C,H,O,P,S'] | ||
mdf_comp_baseline = mdf_comp.loc[mdf_comp['composition'].isin(baseline_cols)] | ||
mdf_comp_baseline.sort_index(axis=1, inplace=True) | ||
|
||
nitrogen_cols = ['C,H,N', 'C,H,N,O','C,H,N,O,S', 'C,Cl,H,N,O', 'Br,C,H,N,O', 'C,Cl,H,N', 'C,Cl,H,N,O,S', 'C,Cl,F,H,N,O','C,H,N,O,P', 'C,H,N,O,P,S'] | ||
mdf_comp_nitrogen = mdf_comp.loc[mdf_comp['composition'].isin(nitrogen_cols)] | ||
mdf_comp_nitrogen.sort_index(axis=1, inplace=True) | ||
|
||
boxplot_comparison( | ||
mdf_comp_baseline, | ||
baseline_cols, | ||
mdf_comp_nitrogen, | ||
nitrogen_cols, | ||
'scores', | ||
colors=['crimson', 'deepskyblue'] | ||
).savefig("paper_plots/Fig7_scores.png", bbox_inches='tight') | ||
|
||
boxplot_comparison( | ||
mdf_comp_baseline, | ||
baseline_cols, | ||
mdf_comp_nitrogen, | ||
nitrogen_cols, | ||
'matches', | ||
colors=["darkgoldenrod", "yellow"], | ||
).savefig("paper_plots/Fig7_matches.png", bbox_inches='tight') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
from utils import * | ||
from plotting import create_plot | ||
|
||
matchms_scores = load_matchms_scores() | ||
merged_all_peaks_same = normalize_df(matchms_scores) | ||
mdf_comp = preprocess_data(merged_all_peaks_same, ["composition"]) | ||
|
||
mdf_comp_ps = mdf_comp[mdf_comp['composition'].str.contains('S|P')] | ||
mdf_comp_ps = mdf_comp_ps[mdf_comp_ps['composition'] != 'C,F,H,N,Si'] | ||
mdf_comp_ps = mdf_comp_ps.groupby('composition').filter(lambda x: len(x) > 2) | ||
create_plot(mdf_comp_ps, "composition").savefig("paper_plots/Fig8_P_and_S.png", bbox_inches='tight') |
Oops, something went wrong.