Skip to content

Commit

Permalink
add predefined obj section in docs
Browse files Browse the repository at this point in the history
  • Loading branch information
apkille committed Aug 16, 2024
1 parent 57d6372 commit 26cf4f4
Showing 1 changed file with 50 additions and 0 deletions.
50 changes: 50 additions & 0 deletions docs/src/introduction.md
Original file line number Diff line number Diff line change
Expand Up @@ -171,6 +171,56 @@ Below, we state all of the supported linear algebra operations on quantum object
- exponential of an operator: [`exp`](@ref),
- vectorization of an operator: [`vec`](@ref).

## Predefined Quantum Objects

So far in this tutorial, we have considered arbitrary kets, bras, operators, and their corresponding operations. This package supports predefined quantum objects and operations in several formalisms, which are discussed in detail in other sections (see, for example, the [quantum harmonic oscillators](@ref Quantum-Harmonic-Oscillators) or [qubit basis](@ref Typical-Qubit-Bases) pages). To get a taste of what's available, let us consider a few symbolic examples. For a complete description, see the [full API page](@ref Full-API).

Quantum gates and their basis states can be represented symbolically:

```jldoctest
julia> CNOT # CNOT Gate
CNOT
julia> X, Y, Z, I # Pauli operators
(X, Y, Z, 𝕀)
julia> X1, X2 # Eigenstates of the Pauli X operator
(|X₁⟩, |X₂⟩)
julia> H * (Z1 ⊗ Z2) # Application of Hadamard gate on |01⟩
H|Z₁⟩|Z₂⟩
```

We also have symbolic representations of bosonic systems:

```jldoctest
julia> FockState(4) # Fock state with 4 quantum harmonic oscillators
|4⟩
julia> Create, Destroy # creation and annihilation operators
(a†, a)
julia> DisplaceOp(im) # Displacement operator for single bosonic mode
D(im)
julia> N * vac # Application of number operator on vacuum state
n|0⟩
```

If we want to substitute a predefined quantum object into a general symbolic expression, we can use the [`substitute`](https://symbolics.juliasymbolics.org/v3.5/manual/expression_manipulation/#SymbolicUtils.substitute) command from [`Symbolics.jl`](https://github.com/JuliaSymbolics/Symbolics.jl):

```jldoctest
julia> using Symbolics
julia> @op A; @ket k;
julia> ex = 2*A + projector(k)
(2A+𝐏[|k⟩])
julia> substitute(ex, Dict([A => X, k => X1]))
(2X+𝐏[|X₁⟩])
```

## Simplifying Expressions

For predefined objects such as the Pauli operators [`X`](@ref), [`Y`](@ref), and [`Z`](@ref), additional simplification can be performed with the [`qsimplify`](@ref) function. Take the following example:
Expand Down

0 comments on commit 26cf4f4

Please sign in to comment.