-
Notifications
You must be signed in to change notification settings - Fork 2.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Prepare PauliEvolutionGate
for Rustiq & port it to Rust
#13295
Changes from 22 commits
3a15589
cea830b
72f2689
8cd2c25
681105d
58e4a03
7f2ec3d
f9b72cf
3985394
99a1153
214b969
d96cebf
e8bcc4f
aba92e2
4fcf639
b53b332
5c95b0d
2eb66f1
87496d2
4a81172
546cc5f
551cd8e
cf7d8b0
6f4fcba
6217d0e
b79751d
e802c45
9b7b0c8
2b6f4eb
1af569b
c478cc1
8d5e3f3
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
// This code is part of Qiskit. | ||
// | ||
// (C) Copyright IBM 2024 | ||
// | ||
// This code is licensed under the Apache License, Version 2.0. You may | ||
// obtain a copy of this license in the LICENSE.txt file in the root directory | ||
// of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. | ||
// | ||
// Any modifications or derivative works of this code must retain this | ||
// copyright notice, and modified files need to carry a notice indicating | ||
// that they have been altered from the originals. | ||
|
||
use pyo3::prelude::*; | ||
use pyo3::types::{PyList, PyString, PyTuple}; | ||
use qiskit_circuit::circuit_data::CircuitData; | ||
use qiskit_circuit::operations::{multiply_param, radd_param, Param, StandardGate}; | ||
use qiskit_circuit::packed_instruction::PackedOperation; | ||
use qiskit_circuit::{Clbit, Qubit}; | ||
use smallvec::{smallvec, SmallVec}; | ||
|
||
use crate::circuit_library::utils; | ||
|
||
// custom types for a more readable code | ||
type StandardInstruction = (StandardGate, SmallVec<[Param; 3]>, SmallVec<[Qubit; 2]>); | ||
type Instruction = ( | ||
PackedOperation, | ||
SmallVec<[Param; 3]>, | ||
Vec<Qubit>, | ||
Vec<Clbit>, | ||
); | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
/// Return instructions (using only StandardGate operations) to implement a Pauli evolution | ||
/// of a given Pauli string over a given time (as Param). | ||
/// | ||
/// Args: | ||
/// pauli: The Pauli string, e.g. "IXYZ". | ||
/// indices: The qubit indices the Pauli acts on, e.g. if given as [0, 1, 2, 3] with the | ||
/// Pauli "IXYZ", then the correspondence is I_0 X_1 Y_2 Z_3. | ||
/// time: The rotation angle. Note that this will directly be used as input of the | ||
/// rotation gate and not be multiplied by a factor of 2 (that should be done before so | ||
/// that this function can remain Rust-only). | ||
/// phase_gate: If ``true``, use the ``PhaseGate`` instead of ``RZGate`` as single-qubit rotation. | ||
/// cx_fountain: If ``true``, implement the CX propagation as "fountain" shape, where each | ||
/// CX uses the top qubit as target. If ``false``, uses a "chain" shape, where CX in between | ||
/// neighboring qubits are used. | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
/// | ||
/// Returns: | ||
/// A pointer to an iterator over standard instructions. | ||
pub fn pauli_evolution<'a>( | ||
pauli: &'a str, | ||
indices: Vec<u32>, | ||
time: Param, | ||
phase_gate: bool, | ||
do_fountain: bool, | ||
) -> Box<dyn Iterator<Item = StandardInstruction> + 'a> { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Why are we using a This isn't critical as performance wouldn't be impacted from what I can tell since There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is because this function returns different types of There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. From a recent talk I had with @alexanderivrii it seems that you want to call the So you could change some of the return types from: pub fn foo() -> Box<dyn Iterator<Item = StandardInstruction> + 'a> { to: pub fn foo() -> impl DoubleEndedIterator<Item = StandardInstruction> + 'a { This would allow you to use any iterator type as long as it can be reversed, which seems to be the case for many of the iterators used here. |
||
// ensure the Pauli has no identity terms | ||
let binding = pauli.to_lowercase(); // lowercase for convenience | ||
let active = binding | ||
.as_str() | ||
.chars() | ||
.zip(indices) | ||
.filter(|(pauli, _)| *pauli != 'i'); | ||
let (paulis, indices): (Vec<char>, Vec<u32>) = active.unzip(); | ||
|
||
match (phase_gate, indices.len()) { | ||
(_, 0) => Box::new(std::iter::empty()), | ||
(false, 1) => Box::new(single_qubit_evolution(paulis[0], indices[0], time)), | ||
(false, 2) => two_qubit_evolution(paulis, indices, time), | ||
_ => Box::new(multi_qubit_evolution( | ||
paulis, | ||
indices, | ||
time, | ||
phase_gate, | ||
do_fountain, | ||
)), | ||
} | ||
} | ||
|
||
/// Implement a single-qubit Pauli evolution of a Pauli given as char, on a given index and | ||
/// for given time. Note that the time here equals the angle of the rotation and is not | ||
/// multiplied by a factor of 2. | ||
fn single_qubit_evolution( | ||
pauli: char, | ||
index: u32, | ||
time: Param, | ||
) -> impl Iterator<Item = StandardInstruction> { | ||
let qubit: SmallVec<[Qubit; 2]> = smallvec![Qubit(index)]; | ||
let param: SmallVec<[Param; 3]> = smallvec![time]; | ||
|
||
std::iter::once(match pauli { | ||
'x' => (StandardGate::RXGate, param, qubit), | ||
'y' => (StandardGate::RYGate, param, qubit), | ||
'z' => (StandardGate::RZGate, param, qubit), | ||
_ => unreachable!("Unsupported Pauli, at this point we expected one of x, y, z."), | ||
}) | ||
} | ||
|
||
/// Implement a 2-qubit Pauli evolution of a Pauli string, on a given indices and | ||
/// for given time. Note that the time here equals the angle of the rotation and is not | ||
/// multiplied by a factor of 2. | ||
/// | ||
/// If possible, Qiskit's native 2-qubit Pauli rotations are used. Otherwise, the general | ||
/// multi-qubit evolution is called. | ||
fn two_qubit_evolution<'a>( | ||
pauli: Vec<char>, | ||
indices: Vec<u32>, | ||
time: Param, | ||
) -> Box<dyn Iterator<Item = StandardInstruction> + 'a> { | ||
let qubits: SmallVec<[Qubit; 2]> = smallvec![Qubit(indices[0]), Qubit(indices[1])]; | ||
let param: SmallVec<[Param; 3]> = smallvec![time.clone()]; | ||
let paulistring: String = pauli.iter().collect(); | ||
|
||
match paulistring.as_str() { | ||
"xx" => Box::new(std::iter::once((StandardGate::RXXGate, param, qubits))), | ||
"zx" => Box::new(std::iter::once((StandardGate::RZXGate, param, qubits))), | ||
"yy" => Box::new(std::iter::once((StandardGate::RYYGate, param, qubits))), | ||
"zz" => Box::new(std::iter::once((StandardGate::RZZGate, param, qubits))), | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
// note that the CX modes (do_fountain=true/false) give the same circuit for a 2-qubit | ||
// Pauli, so we just set it to false here | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
_ => Box::new(multi_qubit_evolution(pauli, indices, time, false, false)), | ||
} | ||
} | ||
|
||
/// Implement a multi-qubit Pauli evolution. See ``pauli_evolution`` detailed docs. | ||
fn multi_qubit_evolution( | ||
pauli: Vec<char>, | ||
indices: Vec<u32>, | ||
time: Param, | ||
phase_gate: bool, | ||
do_fountain: bool, | ||
) -> impl Iterator<Item = StandardInstruction> { | ||
let active_paulis: Vec<(char, Qubit)> = pauli | ||
.into_iter() | ||
.zip(indices.into_iter().map(Qubit)) | ||
.collect(); | ||
|
||
// get the basis change: x -> HGate, y -> SXdgGate, z -> nothing | ||
let basis_change = active_paulis | ||
.clone() | ||
.into_iter() | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Would it be possible to call There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think I tried this and it's not possible since we use There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. For this I think you might need to rewrite the logic quite a bit to avoid some cloning, since you're cloning the iterator's source each time. Maybe start by using There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I changed this in cf7d8b0, let me know if this is what you had in mind 🙂 |
||
.filter(|(p, _)| *p != 'z') | ||
.map(|(p, q)| match p { | ||
'x' => (StandardGate::HGate, smallvec![], smallvec![q]), | ||
'y' => (StandardGate::SXdgGate, smallvec![], smallvec![q]), | ||
_ => unreachable!("Invalid Pauli string."), // "z" and "i" have been filtered out | ||
}); | ||
|
||
// get the inverse basis change | ||
let inverse_basis_change = basis_change.clone().map(|(gate, _, qubit)| match gate { | ||
StandardGate::HGate => (gate, smallvec![], qubit), | ||
StandardGate::SXdgGate => (StandardGate::SXGate, smallvec![], qubit), | ||
_ => unreachable!("Invalid basis-changing Clifford."), | ||
}); | ||
|
||
// get the CX propagation up to the first qubit, and down | ||
let (chain_up, chain_down) = match do_fountain { | ||
true => ( | ||
cx_fountain(active_paulis.clone()), | ||
cx_fountain(active_paulis.clone()).rev(), | ||
), | ||
false => ( | ||
cx_chain(active_paulis.clone()), | ||
cx_chain(active_paulis.clone()).rev(), | ||
), | ||
}; | ||
|
||
// get the RZ gate on the first qubit | ||
let first_qubit = active_paulis.first().unwrap().1; | ||
let z_rotation = std::iter::once(( | ||
if phase_gate { | ||
StandardGate::PhaseGate | ||
} else { | ||
StandardGate::RZGate | ||
}, | ||
smallvec![time], | ||
smallvec![first_qubit], | ||
)); | ||
|
||
// and finally chain everything together | ||
basis_change | ||
.chain(chain_down) | ||
.chain(z_rotation) | ||
.chain(chain_up) | ||
.chain(inverse_basis_change) | ||
} | ||
|
||
/// Implement a Pauli evolution circuit. | ||
/// | ||
/// The Pauli evolution is implemented as a basis transformation to the Pauli-Z basis, | ||
/// followed by a CX-chain and then a single Pauli-Z rotation on the last qubit. Then the CX-chain | ||
/// is uncomputed and the inverse basis transformation applied. E.g. for the evolution under the | ||
/// Pauli string XIYZ we have the circuit | ||
/// ┌───┐┌───────┐┌───┐ | ||
/// 0: ─────────────┤ X ├┤ Rz(2) ├┤ X ├─────────── | ||
/// ┌──────┐┌───┐└─┬─┘└───────┘└─┬─┘┌───┐┌────┐ | ||
/// 1: ┤ √Xdg ├┤ X ├──■─────────────■──┤ X ├┤ √X ├ | ||
/// └──────┘└─┬─┘ └─┬─┘└────┘ | ||
/// 2: ──────────┼───────────────────────┼──────── | ||
/// ┌───┐ │ │ ┌───┐ | ||
/// 3: ─┤ H ├────■───────────────────────■──┤ H ├─ | ||
/// └───┘ └───┘ | ||
/// | ||
/// Args: | ||
/// num_qubits: The number of qubits in the Hamiltonian. | ||
/// sparse_paulis: The Paulis to implement. Given in a sparse-list format with elements | ||
/// ``(pauli_string, qubit_indices, coefficient)``. An element of the form | ||
/// ``("IXYZ", [0,1,2,3], 0.2)``, for example, is interpreted in terms of qubit indices as | ||
/// I_q0 X_q1 Y_q2 Z_q3 and will use a RZ rotation angle of 0.4. | ||
/// insert_barriers: If ``true``, insert a barrier in between the evolution of individual | ||
/// Pauli terms. | ||
/// cx_fountain: If ``true``, implement the CX propagation as "fountain" shape, where each | ||
/// CX uses the top qubit as target. If ``false``, uses a "chain" shape, where CX in between | ||
/// neighboring qubits are used. | ||
/// | ||
/// Returns: | ||
/// Circuit data for to implement the evolution. | ||
#[pyfunction] | ||
#[pyo3(signature = (num_qubits, sparse_paulis, insert_barriers=false, do_fountain=false))] | ||
pub fn py_pauli_evolution( | ||
py: Python, | ||
num_qubits: i64, | ||
sparse_paulis: &Bound<PyList>, | ||
insert_barriers: bool, | ||
do_fountain: bool, | ||
) -> PyResult<CircuitData> { | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
let num_paulis = sparse_paulis.len(); | ||
let mut paulis: Vec<String> = Vec::with_capacity(num_paulis); | ||
let mut indices: Vec<Vec<u32>> = Vec::with_capacity(num_paulis); | ||
let mut times: Vec<Param> = Vec::with_capacity(num_paulis); | ||
let mut global_phase = Param::Float(0.0); | ||
|
||
for el in sparse_paulis.iter() { | ||
let tuple = el.downcast::<PyTuple>()?; | ||
let pauli = tuple.get_item(0)?.downcast::<PyString>()?.to_string(); | ||
let time = Param::extract_no_coerce(&tuple.get_item(2)?)?; | ||
|
||
if pauli.as_str().chars().all(|p| p == 'i') { | ||
global_phase = radd_param(global_phase, time, py); // apply factor -1 at the end | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
continue; | ||
} | ||
|
||
paulis.push(pauli); | ||
times.push(time); // note we do not multiply by 2 here, this is done Python side! | ||
indices.push( | ||
tuple | ||
.get_item(1)? | ||
.downcast::<PyList>()? | ||
.iter() | ||
.map(|index| index.extract::<u32>()) | ||
.collect::<PyResult<_>>()?, | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
); | ||
} | ||
|
||
let evos = paulis.iter().enumerate().zip(indices).zip(times).flat_map( | ||
|(((i, pauli), qubits), time)| { | ||
let as_packed = pauli_evolution(pauli, qubits, time, false, do_fountain).map( | ||
|(gate, params, qubits)| -> PyResult<Instruction> { | ||
Ok(( | ||
gate.into(), | ||
params, | ||
Vec::from_iter(qubits.into_iter()), | ||
Vec::new(), | ||
)) | ||
}, | ||
); | ||
as_packed.chain(utils::maybe_barrier( | ||
py, | ||
num_qubits as u32, | ||
insert_barriers && i < (num_paulis - 1), // do not add barrier on final block | ||
)) | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
}, | ||
); | ||
|
||
// apply factor -1 for global phase | ||
global_phase = multiply_param(&global_phase, -1.0, py); | ||
CircuitData::from_packed_operations(py, num_qubits as u32, 0, evos, global_phase) | ||
} | ||
|
||
fn cx_chain( | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
active_paulis: Vec<(char, Qubit)>, | ||
) -> Box<dyn DoubleEndedIterator<Item = StandardInstruction>> { | ||
let num_terms = active_paulis.len(); | ||
Box::new( | ||
(0..num_terms - 1) | ||
.map(move |i| (active_paulis[i].1, active_paulis[i + 1].1)) | ||
.map(|(target, ctrl)| (StandardGate::CXGate, smallvec![], smallvec![ctrl, target])), | ||
) | ||
} | ||
|
||
fn cx_fountain( | ||
Cryoris marked this conversation as resolved.
Show resolved
Hide resolved
|
||
active_paulis: Vec<(char, Qubit)>, | ||
) -> Box<dyn DoubleEndedIterator<Item = StandardInstruction>> { | ||
let num_terms = active_paulis.len(); | ||
let first_qubit = active_paulis[0].1; | ||
Box::new((1..num_terms).rev().map(move |i| { | ||
let ctrl = active_paulis[i].1; | ||
( | ||
StandardGate::CXGate, | ||
smallvec![], | ||
smallvec![ctrl, first_qubit], | ||
) | ||
})) | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Perhaps the name "Instruction" can be confusing with Qiskit Instruction? Maybe call it something like "EvolutionIstruction" ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This typedef represents a packed instruction, which can be used as input to
CircuitData.from_packed_instructions
(so it's not specific to an evolution). The same is used in some other places (e.g. quantum volume or pauli feature map), so I'd prefer keeping as is for now and potentially adding a general typedef used across all of the rust code 🙂