-
Notifications
You must be signed in to change notification settings - Fork 105
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
NonStationaryFilters1D and NonStationaryFilters2D operators (#478)
* feat: Added NonStationaryFilters1D and NonStationaryFilters2D First implemenation of non-stationary filter estimation operators (point 4 in #466). * minor: added tests for nonstatfilters operators * minor: added checks that filter locations are within dims * minor: reintroduced parallel in rmatvec
- Loading branch information
Showing
6 changed files
with
687 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
""" | ||
Non-stationary Filter Estimation | ||
================================ | ||
This example shows how to use the :py:class:`pylops.signalprocessing.NonStationaryFilters1D` | ||
and :py:class:`pylops.signalprocessing.NonStationaryFilters2D` operators to perform non-stationary | ||
filter estimation that when convolved with an input signal produces a desired output signal. | ||
""" | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from scipy.signal.windows import gaussian | ||
|
||
import pylops | ||
from pylops.utils.wavelets import ricker | ||
|
||
plt.close("all") | ||
|
||
|
||
############################################################################### | ||
# We will start by creating a zero signal of length `nt` and we will | ||
# place a comb of unitary spikes. We also create a non-stationary filter defined by | ||
# 5 equally spaced `Ricker wavelets <http://subsurfwiki.org/wiki/Ricker_wavelet>`_ | ||
# with dominant frequencies of :math:`f = 10, 15, 20, 25` and :math:`30` Hz. | ||
nt = 601 | ||
dt = 0.004 | ||
t = np.arange(nt) * dt | ||
tw = ricker(t[:51], f0=5)[1] | ||
|
||
fs = [10, 15, 20, 25, 30] | ||
wavs = np.stack([ricker(t[:51], f0=f)[0] for f in fs]) | ||
|
||
x = np.zeros(nt) | ||
x[64 : nt - 64 : 64] = 1.0 | ||
|
||
Cop = pylops.signalprocessing.NonStationaryFilters1D( | ||
x, hsize=101, ih=(101, 201, 301, 401, 501) | ||
) | ||
|
||
y = Cop @ wavs | ||
|
||
wavsinv = Cop.div(y, niter=20) | ||
wavsinv = wavsinv.reshape(wavs.shape) | ||
|
||
fig, axs = plt.subplots(1, len(fs), sharey=True, figsize=(14, 3)) | ||
fig.suptitle("1D Non-stationary filter estimation") | ||
for i, ax in enumerate(axs): | ||
ax.plot(wavs[i], "k", lw=4, label="True") | ||
ax.plot(wavsinv[i], "r", lw=2, label="Estimate") | ||
ax.set_xlabel("Time [sec]") | ||
axs[0].legend() | ||
plt.tight_layout() | ||
|
||
############################################################################### | ||
# Finally, we repeat the same exercise with a 2-dimensional non-stationary | ||
# filter | ||
nx, nz = 201, 101 | ||
|
||
wav1a, _, _ = ricker(t[:9], f0=12) | ||
wav1b, _, _ = ricker(t[:9], f0=30) | ||
wav2a = gaussian(15, 2.0) | ||
wav2b = gaussian(15, 4.0) | ||
|
||
wav11 = np.outer(wav1a, wav2a[np.newaxis]).T | ||
wav12 = np.outer(wav1b, wav2a[np.newaxis]).T | ||
wav21 = np.outer(wav1b, wav2b[np.newaxis]).T | ||
wav22 = np.outer(wav1a, wav2b[np.newaxis]).T | ||
wavsize = wav11.shape | ||
|
||
hs = np.zeros((2, 2, *wavsize)) | ||
hs[0, 0] = wav11 | ||
hs[0, 1] = wav12 | ||
hs[1, 0] = wav21 | ||
hs[1, 1] = wav22 | ||
|
||
x = np.zeros((nx, nz)) | ||
x[:, 21] = 1.0 | ||
x[:, 41] = -1.0 | ||
|
||
Cop = pylops.signalprocessing.NonStationaryFilters2D( | ||
inp=x, hshape=wavsize, ihx=(21, 41), ihz=(21, 41), engine="numba" | ||
) | ||
|
||
y = Cop @ hs | ||
|
||
hsinv = Cop.div(y.ravel(), niter=50) | ||
hsinv = hsinv.reshape(hs.shape) | ||
|
||
fig, axs = plt.subplots(2, 2, figsize=(10, 5)) | ||
fig.suptitle("True filters") | ||
axs[0, 0].imshow(hs[0, 0], cmap="gray", vmin=-1, vmax=1) | ||
axs[0, 0].axis("tight") | ||
axs[0, 0].set_title(r"$H_{1,1}$") | ||
axs[0, 1].imshow(hs[0, 1], cmap="gray", vmin=-1, vmax=1) | ||
axs[0, 1].axis("tight") | ||
axs[0, 1].set_title(r"$H_{1,2}$") | ||
axs[1, 0].imshow(hs[1, 0], cmap="gray", vmin=-1, vmax=1) | ||
axs[1, 0].axis("tight") | ||
axs[1, 0].set_title(r"$H_{2,1}$") | ||
axs[1, 1].imshow(hs[1, 1], cmap="gray", vmin=-1, vmax=1) | ||
axs[1, 1].axis("tight") | ||
axs[1, 1].set_title(r"$H_{2,2}$") | ||
plt.tight_layout() | ||
|
||
fig, axs = plt.subplots(2, 2, figsize=(10, 5)) | ||
fig.suptitle("Estimated filters") | ||
axs[0, 0].imshow(hsinv[0, 0], cmap="gray", vmin=-1, vmax=1) | ||
axs[0, 0].axis("tight") | ||
axs[0, 0].set_title(r"$H_{1,1}$") | ||
axs[0, 1].imshow(hsinv[0, 1], cmap="gray", vmin=-1, vmax=1) | ||
axs[0, 1].axis("tight") | ||
axs[0, 1].set_title(r"$H_{1,2}$") | ||
axs[1, 0].imshow(hsinv[1, 0], cmap="gray", vmin=-1, vmax=1) | ||
axs[1, 0].axis("tight") | ||
axs[1, 0].set_title(r"$H_{2,1}$") | ||
axs[1, 1].imshow(hsinv[1, 1], cmap="gray", vmin=-1, vmax=1) | ||
axs[1, 1].axis("tight") | ||
axs[1, 1].set_title(r"$H_{2,2}$") | ||
plt.tight_layout() | ||
|
||
|
||
fig, axs = plt.subplots(2, 2, figsize=(10, 5)) | ||
fig.suptitle("Estimation error") | ||
axs[0, 0].imshow(hs[0, 0] - hsinv[0, 0], cmap="gray", vmin=-1, vmax=1) | ||
axs[0, 0].axis("tight") | ||
axs[0, 0].set_title(r"$H_{1,1}$") | ||
axs[0, 1].imshow(hs[0, 1] - hsinv[0, 1], cmap="gray", vmin=-1, vmax=1) | ||
axs[0, 1].axis("tight") | ||
axs[0, 1].set_title(r"$H_{1,2}$") | ||
axs[1, 0].imshow(hs[1, 0] - hsinv[1, 0], cmap="gray", vmin=-1, vmax=1) | ||
axs[1, 0].axis("tight") | ||
axs[1, 0].set_title(r"$H_{2,1}$") | ||
axs[1, 1].imshow(hs[1, 1] - hsinv[1, 1], cmap="gray", vmin=-1, vmax=1) | ||
axs[1, 1].axis("tight") | ||
axs[1, 1].set_title(r"$H_{2,2}$") | ||
plt.tight_layout() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.