-
Notifications
You must be signed in to change notification settings - Fork 0
/
shape_detection.py
50 lines (44 loc) · 1.76 KB
/
shape_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# detecting shapes by analysing contours, bounding boxes, after converting to GrayScale
import cv2
import numpy as np
def getContours(img):
contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE) # retrieves extreme outer contours
for cnt in contours:
area = cv2.contourArea(cnt)
print(area)
if area > 500:
cv2.drawContours(imgContour, cnt, -1, (255, 0, 0), 3)
peri = cv2.arcLength(cnt, True)
print(peri)
approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
print(len(approx))
objCor = len(approx)
x, y, w, h = cv2.boundingRect(approx)
if objCor == 3:
objectType = "Tri"
elif objCor == 4:
aspRatio = w / float(h)
if aspRatio > 0.95 and aspRatio < 1.05:
objectType = "Square"
else:
objectType = "Rectange"
elif objCor > 4:
objectType = "Circel"
else:
objectType = "None"
cv2.rectangle(imgContour, (x, y), (x + w, y + h), (0, 0, 255), 4)
cv2.putText(imgContour, objectType, (x + (w // 2) - 10, y + (h // 2) - 10), cv2.FONT_HERSHEY_COMPLEX, 0.5,
(0, 0, 0), 2)
img = cv2.imread("Resources/shapes.png")
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur(imgGray, (7, 7), 1)
imgCanny = cv2.Canny(imgBlur, 50, 50)
imgContour = img.copy()
getContours(imgCanny)
# cv2.imshow("Original",img)
# cv2.imshow("Image Gray",imgGray)
# cv2.imshow("Image Blur",imgBlur)
cv2.imshow("Image Canny Edge", imgCanny)
cv2.imshow("Image Contour", imgContour)
cv2.waitKey(10000)