Skip to content

Commit

Permalink
Support complex tensors for Pack operation
Browse files Browse the repository at this point in the history
  • Loading branch information
Pranshu-S committed Mar 17, 2024
1 parent c208a88 commit 2517c8a
Show file tree
Hide file tree
Showing 2 changed files with 66 additions and 2 deletions.
16 changes: 14 additions & 2 deletions src/frontends/tensorflow_common/src/op/pack.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
#include "openvino/op/concat.hpp"
#include "openvino/op/constant.hpp"
#include "openvino/op/unsqueeze.hpp"
#include "helper_ops/complex_type_mark.hpp"

using namespace std;
using namespace ov::op;
Expand All @@ -16,20 +17,31 @@ namespace tensorflow {
namespace op {

OutputVector translate_pack_op(const NodeContext& node) {
default_op_checks(node, 1, {"Pack", "PACK"});
auto num_size = static_cast<int>(node.get_input_size());
default_op_checks(node, 1, {"Pack", "PACK"}, true);

auto axis = node.get_attribute<int64_t>("axis", 0);

auto num_size = static_cast<int>(node.get_input_size());
auto complex_type_mark = as_type_ptr<ComplexTypeMark>(node.get_input(0).get_node_shared_ptr());
auto axis_const = make_shared<v0::Constant>(element::i64, Shape{}, axis);

if (complex_type_mark) {
axis_const = make_shared<v0::Constant>(element::i64, Shape{}, axis + 1);
}

OutputVector concat_inputs;
for (int ind = 0; ind < num_size; ++ind) {
auto in = node.get_input(ind);
concat_inputs.push_back(make_shared<v0::Unsqueeze>(in, axis_const));
}

auto pack = make_shared<v0::Concat>(concat_inputs, axis);

set_node_name(node.get_name(), pack);
if (complex_type_mark) {
auto complex_result = make_shared<ComplexTypeMark>(pack, complex_type_mark->get_complex_part_type());
return {complex_result};
}
return {pack};
}
} // namespace op
Expand Down
52 changes: 52 additions & 0 deletions tests/layer_tests/tensorflow_tests/test_tf_Pack.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,3 +51,55 @@ def test_pack_basic(self, params, ie_device, precision, ir_version, temp_dir,
self._test(*self.create_pack_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)


class TestComplexPack(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
inputs_data = {}
for input_name, input_shape in inputs_info.items():
inputs_data[input_name] = np.random.randint(-5, 5, input_shape).astype(self.input_type)
return inputs_data

def create_pack_net(self, input_shape, input_num, axis, input_type):
self.input_type = input_type
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
inputs = []
type_map = {
np.float32: tf.float32,
np.int32: tf.int32,
}
assert input_type in type_map, "Test error: need to update type_map"
tf_type = type_map[input_type]
complex_inputs = []
for ind in range(input_num):
input_real = tf.compat.v1.placeholder(tf_type, input_shape, 'input' + str(ind) + '_real')
input_imag = tf.compat.v1.placeholder(tf_type, input_shape, 'input' + str(ind) + '_imag')
inputs.append(input_real)
inputs.append(input_imag)

complex_inputs.append(tf.raw_ops.Complex(real=input_real, imag=input_imag))
if axis is not None:
tf.raw_ops.Pack(values=complex_inputs, axis=axis)
else:
tf.raw_ops.Pack(values=complex_inputs)
tf.compat.v1.global_variables_initializer()

tf_net = sess.graph_def

return tf_net, None

test_data_basic = [
dict(input_shape=[2, 4], input_num=2, axis=None, input_type=np.float32),
dict(input_shape=[3, 1, 2], input_num=3, axis=1, input_type=np.int32),
]

@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_pack_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_pack_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)

0 comments on commit 2517c8a

Please sign in to comment.