Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore(experiments): Add assertions for property math operations #26952

Merged
merged 2 commits into from
Dec 17, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -1522,6 +1522,221 @@ def test_query_runner_standard_flow_v2_stats(self):
self.assertEqual(test_variant.count, 5.0)
self.assertEqual(test_variant.exposure, 1.0)

@freeze_time("2020-01-01T12:00:00Z")
def test_query_runner_property_math_sum(self):
self._test_query_runner_property_math(
math="sum",
expected_control={
"count": 10,
"absolute_exposure": 5,
"data": [0.0, 0.0, 1.0, 3.0, 6.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
},
expected_test={
"count": 90,
"absolute_exposure": 10,
"data": [0.0, 0.0, 2.0, 6.0, 12.0, 20.0, 30.0, 42.0, 56.0, 72.0, 90.0, 90.0, 90.0, 90.0, 90.0],
},
)

@freeze_time("2020-01-01T12:00:00Z")
def test_query_runner_property_math_avg(self):
self._test_query_runner_property_math(
math="avg",
expected_control={
"count": 10,
"absolute_exposure": 5,
"data": [0.0, 0.0, 1.0, 3.0, 6.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
},
expected_test={
"count": 90,
"absolute_exposure": 10,
"data": [0.0, 0.0, 2.0, 6.0, 12.0, 20.0, 30.0, 42.0, 56.0, 72.0, 90.0, 90.0, 90.0, 90.0, 90.0],
},
)

@freeze_time("2020-01-01T12:00:00Z")
def test_query_runner_property_math_min(self):
self._test_query_runner_property_math(
math="min",
expected_control={
"count": 5,
"absolute_exposure": 5,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
},
expected_test={
"count": 10,
"absolute_exposure": 10,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0],
},
)

@freeze_time("2020-01-01T12:00:00Z")
def test_query_runner_property_math_max(self):
self._test_query_runner_property_math(
math="max",
expected_control={
"count": 5,
"absolute_exposure": 5,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
},
expected_test={
"count": 10,
"absolute_exposure": 10,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0],
},
)

@freeze_time("2020-01-01T12:00:00Z")
def test_query_runner_property_math_median(self):
self._test_query_runner_property_math(
math="median",
expected_control={
"count": 5,
"absolute_exposure": 5,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
},
expected_test={
"count": 10,
"absolute_exposure": 10,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0],
},
)

@freeze_time("2020-01-01T12:00:00Z")
def test_query_runner_property_math_p90(self):
self._test_query_runner_property_math(
math="p90",
expected_control={
"count": 5,
"absolute_exposure": 5,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
},
expected_test={
"count": 10,
"absolute_exposure": 10,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0],
},
)

@freeze_time("2020-01-01T12:00:00Z")
def test_query_runner_property_math_p95(self):
self._test_query_runner_property_math(
math="p95",
expected_control={
"count": 5,
"absolute_exposure": 5,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
},
expected_test={
"count": 10,
"absolute_exposure": 10,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0],
},
)

@freeze_time("2020-01-01T12:00:00Z")
def test_query_runner_property_math_p99(self):
self._test_query_runner_property_math(
math="p99",
expected_control={
"count": 5,
"absolute_exposure": 5,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
},
expected_test={
"count": 10,
"absolute_exposure": 10,
"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 10.0, 10.0, 10.0],
},
)

def _test_query_runner_property_math(self, math, expected_control, expected_test):
feature_flag = self.create_feature_flag()
experiment = self.create_experiment(feature_flag=feature_flag, start_date=datetime(2020, 1, 1))

feature_flag_property = f"$feature/{feature_flag.key}"

# control values are 0, 1, 2, 3, 4
# test values are 0, 2, 4, 6, 8, 10, 12, 14, 16, 18

# Populate metric + exposure events
for variant, count in [("control", 5), ("test", 10)]:
for i in range(count):
_create_event(
team=self.team,
event="$feature_flag_called",
distinct_id=f"user_{variant}_{i}",
properties={
"$feature_flag_response": variant,
feature_flag_property: variant,
"$feature_flag": feature_flag.key,
},
timestamp=datetime(2020, 1, i + 1),
)
_create_event(
team=self.team,
event="purchase",
distinct_id=f"user_{variant}_{i}",
properties={
feature_flag_property: variant,
"amount": i * (1 if variant == "control" else 2),
},
timestamp=datetime(2020, 1, i + 2),
)

count_query = TrendsQuery(
series=[
EventsNode(
event="purchase",
math=math,
math_property="amount",
math_property_type="event_properties",
)
]
)
exposure_query = TrendsQuery(series=[EventsNode(event="$feature_flag_called")])
experiment_query = ExperimentTrendsQuery(
experiment_id=experiment.id,
kind="ExperimentTrendsQuery",
count_query=count_query,
exposure_query=exposure_query,
)

experiment.metrics = [{"type": "primary", "query": experiment_query.model_dump()}]
experiment.save()

query_runner = ExperimentTrendsQueryRunner(
query=ExperimentTrendsQuery(**experiment.metrics[0]["query"]), team=self.team
)

flush_persons_and_events()

result = query_runner.calculate()

trend_result = cast(ExperimentTrendsQueryResponse, result)

self.assertEqual(len(result.variants), 2)

control_result = next(variant for variant in trend_result.variants if variant.key == "control")
test_result = next(variant for variant in trend_result.variants if variant.key == "test")

control_insight = next(variant for variant in trend_result.insight if variant["breakdown_value"] == "control")
test_insight = next(variant for variant in trend_result.insight if variant["breakdown_value"] == "test")

self.assertEqual(control_result.count, expected_control["count"])
self.assertEqual(test_result.count, expected_test["count"])
self.assertEqual(control_result.absolute_exposure, expected_control["absolute_exposure"])
self.assertEqual(test_result.absolute_exposure, expected_test["absolute_exposure"])

self.assertEqual(
control_insight["data"],
expected_control["data"],
)
self.assertEqual(
test_insight["data"],
expected_test["data"],
)

@freeze_time("2020-01-01T12:00:00Z")
def test_validate_event_variants_no_events(self):
feature_flag = self.create_feature_flag()
Expand Down
Loading