Skip to content

Shepard Interpolation Neural Network - Theano and Keras implementation

Notifications You must be signed in to change notification settings

Philliams/PySINN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PySINN

PySINN is a python implementation of the Shepard Interpolation Neural Network using Keras and Theano.

Dependencies:

PySINN uses Keras and Theano for all of the Machine Learning computations and Scikit Learn for the K-means clustering.

Usage:
# create Shepard Interpolation Neural Network object
s = SINN_model(data_training,labels_training,number_of_clusters,nodes_per_cluster,batch_size,epochs,verbose=1,model_optimizer='RMSprop',loss_metric='categorical_crossentropy')

# Train the model
s.train_model(data_training,labels_training,data_testing,labels_testing)

# Use model
predictions = s.predict(data_testing)

About

Shepard Interpolation Neural Network - Theano and Keras implementation

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages