-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
373 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Thu Sep 14 10:29:12 2023 | ||
@author: dhruv | ||
""" | ||
|
||
#import dependencies | ||
import numpy as np | ||
import pandas as pd | ||
import scipy.io | ||
from Dependencies.functions import * | ||
from Dependencies.wrappers import * | ||
import os | ||
from Dependencies import neuroseries as nts | ||
import matplotlib.pyplot as plt | ||
from scipy.stats import kendalltau, wilcoxon, mannwhitneyu | ||
import seaborn as sns | ||
|
||
#%% Data organization | ||
|
||
data_directory = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Data/AdrianPoSub/###AllPoSub' | ||
datasets = np.genfromtxt(os.path.join(data_directory,'dataset_Hor_DM.list'), delimiter = '\n', dtype = str, comments = '#') | ||
|
||
readpath = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Projects/PoSub-UPstate/Data' | ||
writepath = '/home/dhruv/Code/MehrotraLevenstein_2023/Analysis/OutputFiles' | ||
|
||
allcoefs_up_ex = [] | ||
allcoefs_dn_ex = [] | ||
|
||
for s in datasets: | ||
|
||
print(s) | ||
name = s.split('/')[-1] | ||
path = os.path.join(data_directory, s) | ||
rawpath = os.path.join(readpath,s) | ||
|
||
###Loading the data | ||
spikes, shank = loadSpikeData(path) | ||
n_channels, fs, shank_to_channel = loadXML(rawpath) | ||
|
||
###Load cell depths | ||
filepath = os.path.join(path, 'Analysis') | ||
listdir = os.listdir(filepath) | ||
file = [f for f in listdir if 'CellDepth' in f] | ||
celldepth = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
depth = celldepth['cellDep'] | ||
|
||
###Load cell types | ||
file = [f for f in listdir if 'CellTypes' in f] | ||
celltype = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
|
||
pyr = [] | ||
interneuron = [] | ||
hd = [] | ||
|
||
for i in range(len(spikes)): | ||
if celltype['ex'][i] == 1 and celltype['gd'][i] == 1: | ||
pyr.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['fs'][i] == 1 and celltype['gd'][i] == 1: | ||
interneuron.append(i) | ||
|
||
for i in range(len(spikes)): | ||
if celltype['hd'][i] == 1 and celltype['gd'][i] == 1: | ||
hd.append(i) | ||
|
||
###Load UP and DOWN states | ||
file = os.path.join(writepath, name +'.evt.py.dow') | ||
if os.path.exists(file): | ||
tmp = np.genfromtxt(file)[:,0] | ||
tmp = tmp.reshape(len(tmp)//2,2)/1000 | ||
down_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') | ||
|
||
file = os.path.join(writepath, name +'.evt.py.upp') | ||
if os.path.exists(file): | ||
tmp = np.genfromtxt(file)[:,0] | ||
tmp = tmp.reshape(len(tmp)//2,2)/1000 | ||
up_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') | ||
|
||
#%% Compute Peri-event time Histogram (PETH) for UP onset | ||
|
||
binsize = 5 | ||
nbins = 1000 | ||
neurons = list(spikes.keys()) | ||
times = np.arange(0, binsize*(nbins+1), binsize) - (nbins*binsize)/2 | ||
cc = pd.DataFrame(index = times, columns = neurons) | ||
tsd_up = up_ep.as_units('ms').start.values | ||
|
||
rates = [] | ||
|
||
for i in neurons: | ||
spk2 = spikes[i].restrict(up_ep).as_units('ms').index.values | ||
tmp = crossCorr(tsd_up, spk2, binsize, nbins) | ||
|
||
tmp = pd.DataFrame(tmp) | ||
tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2) | ||
|
||
#Normalize PETH by mean rate | ||
fr = len(spk2)/up_ep.tot_length('s') | ||
rates.append(fr) | ||
cc[i] = tmp.values | ||
cc[i] = tmp.values/fr | ||
dd = cc[0:150] | ||
|
||
#Only EX cells | ||
ee = dd[pyr] | ||
|
||
#%% Compute UP state Onset | ||
|
||
indexplot_ex = [] | ||
depths_keeping_ex = [] | ||
|
||
for i in range(len(ee.columns)): | ||
a = np.where(ee.iloc[:,i] > 0.5) | ||
if len(a[0]) > 0: | ||
depths_keeping_ex.append(depth.flatten()[ee.columns[i]]) | ||
res = ee.iloc[:,i].index[a] | ||
indexplot_ex.append(res[0]) | ||
|
||
#Onset v/s depth correlation | ||
coef_ex, p_ex = kendalltau(indexplot_ex, depths_keeping_ex) | ||
allcoefs_up_ex.append(coef_ex) | ||
|
||
#%% Compute PETH for DOWN onset | ||
|
||
binsize = 5 | ||
nbins = 1000 | ||
neurons = list(spikes.keys()) | ||
times = np.arange(0, binsize*(nbins+1), binsize) - (nbins*binsize)/2 | ||
cc = pd.DataFrame(index = times, columns = neurons) | ||
tsd_dn = down_ep.as_units('ms').start.values | ||
|
||
rates = [] | ||
|
||
for i in neurons: | ||
spk2 = spikes[i].restrict(up_ep).as_units('ms').index.values | ||
tmp = crossCorr(tsd_dn, spk2, binsize, nbins) | ||
tmp = pd.DataFrame(tmp) | ||
tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2) | ||
|
||
#Normalize PETH by mean rate | ||
fr = len(spk2)/up_ep.tot_length('s') | ||
rates.append(fr) | ||
cc[i] = tmp.values | ||
cc[i] = tmp.values/fr | ||
|
||
dd = cc[-250:250] | ||
|
||
#Only EX cells | ||
ee = dd[pyr] | ||
|
||
#%% Compute DOWN state onset | ||
|
||
tmp_ex = ee.loc[5:] > 0.5 | ||
|
||
tokeep_ex = tmp_ex.columns[tmp_ex.sum(0) > 0] | ||
ends_ex = np.array([tmp_ex.index[np.where(tmp_ex[i])[0][0]] for i in tokeep_ex]) | ||
es_ex = pd.Series(index = tokeep_ex, data = ends_ex) | ||
|
||
tmp2_ex = ee.loc[-150:-5] > 0.5 | ||
|
||
tokeep2_ex = tmp2_ex.columns[tmp2_ex.sum(0) > 0] | ||
start_ex = np.array([tmp2_ex.index[np.where(tmp2_ex[i])[0][-1]] for i in tokeep2_ex]) | ||
st_ex = pd.Series(index = tokeep2_ex, data = start_ex) | ||
|
||
ix_ex = np.intersect1d(tokeep_ex,tokeep2_ex) | ||
ix_ex = [int(i) for i in ix_ex] | ||
|
||
depths_keeping_ex = depth[ix_ex] | ||
|
||
#Onset v/s depth correlation | ||
coef_ex, p_ex = kendalltau(st_ex[ix_ex], depths_keeping_ex) | ||
allcoefs_dn_ex.append(coef_ex) | ||
|
||
#%% Summary data | ||
|
||
DUcorr = pd.DataFrame(allcoefs_up_ex) | ||
UDcorr = pd.DataFrame(allcoefs_dn_ex) | ||
DUtype = pd.DataFrame(['DU' for x in range(len(allcoefs_up_ex))]) | ||
UDtype = pd.DataFrame(['UD' for x in range(len(allcoefs_dn_ex))]) | ||
|
||
summary = pd.DataFrame() | ||
summary['corr'] = pd.concat([DUcorr,UDcorr]) | ||
summary['type'] = pd.concat([DUtype,UDtype]) | ||
|
||
#%% Plotting | ||
|
||
sns.set_style('white') | ||
palette = ['royalblue', 'lightsteelblue'] | ||
ax = sns.violinplot( x = summary['type'], y= summary['corr'] , data = summary, dodge = False, | ||
palette = palette,cut = 2, | ||
scale="width", inner=None) | ||
ax.tick_params(bottom=True, left=True) | ||
xlim = ax.get_xlim() | ||
ylim = ax.get_ylim() | ||
for violin in ax.collections: | ||
x0, y0, width, height = violin.get_paths()[0].get_extents().bounds | ||
violin.set_clip_path(plt.Rectangle((x0, y0), width / 2, height, transform=ax.transData)) | ||
sns.boxplot(x = summary['type'], y = summary['corr'] , data = summary, saturation = 1, showfliers = False, | ||
width = 0.3, boxprops = {'zorder': 3, 'facecolor': 'none'}, ax = ax) | ||
old_len_collections = len(ax.collections) | ||
sns.swarmplot(x = summary['type'], y = summary['corr'], data = summary, color = 'k', dodge = False, ax = ax) | ||
|
||
for dots in ax.collections[old_len_collections:]: | ||
dots.set_offsets(dots.get_offsets()) | ||
ax.set_xlim(xlim) | ||
ax.set_ylim(ylim) | ||
plt.axhline(0, color = 'silver') | ||
plt.ylabel('Delay v/s depth (R)') | ||
ax.set_box_aspect(1) | ||
|
||
#%% Stats | ||
|
||
w_up, p_up = wilcoxon(np.array(allcoefs_up_ex)-0) | ||
w_dn, p_dn = wilcoxon(np.array(allcoefs_dn_ex)-0) | ||
t, p = mannwhitneyu(allcoefs_up_ex, allcoefs_dn_ex) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Thu Sep 14 16:45:10 2023 | ||
@author: dhruv | ||
""" | ||
|
||
#import dependencies | ||
import numpy as np | ||
import pandas as pd | ||
import scipy.io | ||
from Dependencies.functions import * | ||
from Dependencies.wrappers import * | ||
import os | ||
from Dependencies import neuroseries as nts | ||
import matplotlib.pyplot as plt | ||
from scipy.stats import wilcoxon | ||
|
||
#%% Data organization | ||
|
||
data_directory = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Data/AdrianPoSub/###AllPoSub' | ||
datasets = np.genfromtxt(os.path.join(data_directory,'dataset_Hor_DM.list'), delimiter = '\n', dtype = str, comments = '#') | ||
|
||
readpath = '/media/DataDhruv/Dropbox (Peyrache Lab)/Peyrache Lab Team Folder/Projects/PoSub-UPstate/Data' | ||
writepath = '/home/dhruv/Code/MehrotraLevenstein_2023/Analysis/OutputFiles' | ||
|
||
dur_D = [] | ||
dur_V = [] | ||
|
||
for s in datasets: | ||
|
||
print(s) | ||
name = s.split('/')[-1] | ||
path = os.path.join(data_directory, s) | ||
rawpath = os.path.join(readpath,s) | ||
|
||
###Loading the data | ||
spikes, shank = loadSpikeData(path) | ||
n_channels, fs, shank_to_channel = loadXML(rawpath) | ||
|
||
###Load cell depths | ||
filepath = os.path.join(path, 'Analysis') | ||
listdir = os.listdir(filepath) | ||
file = [f for f in listdir if 'CellDepth' in f] | ||
celldepth = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
depth = celldepth['cellDep'] | ||
|
||
###Load cell types | ||
file = [f for f in listdir if 'CellTypes' in f] | ||
celltype = scipy.io.loadmat(os.path.join(filepath,file[0])) | ||
|
||
###Load global UP and DOWN states | ||
file = os.path.join(writepath, name +'.evt.py.dow') | ||
if os.path.exists(file): | ||
tmp = np.genfromtxt(file)[:,0] | ||
tmp = tmp.reshape(len(tmp)//2,2)/1000 | ||
down_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') | ||
|
||
file = os.path.join(writepath, name +'.evt.py.upp') | ||
if os.path.exists(file): | ||
tmp = np.genfromtxt(file)[:,0] | ||
tmp = tmp.reshape(len(tmp)//2,2)/1000 | ||
up_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's') | ||
|
||
#%% Determine which units are in dorsal or ventral portion | ||
|
||
data = pd.DataFrame() | ||
data['depth'] = np.reshape(depth,(len(spikes.keys())),) | ||
data['level'] = pd.cut(data['depth'],2, precision=0, labels=[1,0]) #0 is dorsal, 1 is ventral | ||
data['celltype'] = np.nan | ||
data['gd'] = 0 | ||
|
||
for i in range(len(spikes)): | ||
if celltype['gd'][i] == 1: | ||
data.loc[i,'gd'] = 1 | ||
|
||
data = data[data['gd'] == 1] | ||
|
||
#%% Split population activity into dorsal and ventral | ||
|
||
mua = {} | ||
|
||
latency_dorsal = [] | ||
latency_ventral = [] | ||
|
||
# define mua for dorsal and ventral | ||
for i in range(2): | ||
mua[i] = [] | ||
for n in data[data['level'] == i].index: | ||
mua[i].append(spikes[n].index.values) | ||
mua[i] = nts.Ts(t = np.sort(np.hstack(mua[i]))) | ||
|
||
#%% Compute PETH of dorsal and ventral MUA around global DOWN state | ||
### And determine the threshold crossing | ||
|
||
binsize = 5 | ||
nbins = 1000 | ||
neurons = list(mua.keys()) | ||
times = np.arange(0, binsize*(nbins+1), binsize) - (nbins*binsize)/2 | ||
cc = pd.DataFrame(index = times, columns = neurons) | ||
tsd_dn = down_ep.as_units('ms').start.values | ||
|
||
rates = [] | ||
|
||
ddur = [] | ||
vdur = [] | ||
|
||
for i in neurons: | ||
spk2 = mua[i].restrict(up_ep).as_units('ms').index.values | ||
tmp = crossCorr(tsd_dn, spk2, binsize, nbins) | ||
tmp = pd.DataFrame(tmp) | ||
tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2) | ||
|
||
#Normalize PETH by mean rate | ||
fr = len(spk2)/up_ep.tot_length('s') | ||
rates.append(fr) | ||
cc[i] = tmp.values | ||
cc[i] = tmp.values/fr | ||
|
||
dd = cc[-250:250] | ||
|
||
#Threshold crossing | ||
tmp = dd[i].loc[5:] > 0.2 | ||
ends = tmp.where(tmp == True).first_valid_index() | ||
|
||
tmp2 = dd[i].loc[-150:-5] > 0.2 | ||
start = tmp2.where(tmp2 == True).last_valid_index() | ||
|
||
#Categorize the durations by anatomical position | ||
if i == 0: | ||
ddur.append(ends - start) | ||
else: | ||
vdur.append(ends - start) | ||
|
||
#Compute dorsal and ventral DOWN state durations for all datasets | ||
dur_D.append(ddur[0]) | ||
dur_V.append(vdur[0]) | ||
|
||
#%% Plotting | ||
|
||
plt.scatter(dur_D, dur_V, color = 'k', zorder = 3) | ||
plt.gca().axline((min(min(dur_D),min(dur_V)),min(min(dur_D),min(dur_V)) ), slope=1, color = 'silver', linestyle = '--') | ||
plt.xlabel('Dorsal DOWN duration (ms)') | ||
plt.ylabel('Ventral DOWN duration (ms)') | ||
plt.axis('square') | ||
|
||
#%% Stats | ||
|
||
W,p = wilcoxon(dur_D,dur_V) | ||
|
||
|
||
|
||
|