Skip to content

Paulitos/DataSciencePortfolio_paulos

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

Data Scientist

Technical Skills: Python, SQL, Excel, AWS, R

Education

B.S., Data Science | Universitat Carlemany de Andorra (March 2025)

Projects

EDA Top 100 Night Clubs 2024

Publication

Utilized the Top 100 Night Clubs 2024 dataset to perform an exploratory data analysis (EDA) using Python. This comprehensive analysis involved cleaning and processing the data, followed by detailed visualization and insights generation. Key findings include trends in club rankings, geographic distribution, and influential factors contributing to club popularity. This data-driven approach provides valuable insights for business owners to enhance their strategies and for the general public to understand the nightlife industry dynamics. The project showcases a robust methodology to derive actionable business intelligence from raw data.

Top 100 Night Clubs 2024

Banking Marketing Targets

Publication

Analyzed marketing campaign data from a Portuguese bank to identify effective strategies for promoting term deposits. Conducted comprehensive data cleaning and processing, followed by SQL-based analysis and visualization. Key findings include the effectiveness of campaign sizes, customer segmentation by job and education level, and seasonal trends in campaign success. This project provides actionable insights to optimize future marketing efforts and improve customer targeting, showcasing a robust approach to deriving business intelligence from raw data.

Banking Marketing Targets

Credit Card Fraud Detection with Machine Learning

Publication

In this project, I developed a machine learning model to detect fraudulent credit card transactions. I used Python, leveraging libraries like Pandas for data preprocessing, Scikit-learn for model training, and GridSearchCV for hyperparameter tuning. A Random Forest classifier was selected and optimized, achieving a 99% precision, recall, and F1-score. This demonstrates the model's effectiveness in accurately identifying fraudulent transactions with minimal errors.

Credit Card Fraud Detection

For a COMPLETE list of projects visit Projects Section

About

data science portfolio Pablo (Pa_u_los) Sánchez Arias

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%