Skip to content

Commit

Permalink
IHeader
Browse files Browse the repository at this point in the history
ghstack-source-id: 834609ba2dcf58af1d688dad01b790ecea46e67f
ghstack-comment-id: 2559847826
Pull Request resolved: #591
  • Loading branch information
fzimmermann89 committed Dec 30, 2024
1 parent 7f4f265 commit d7cb064
Showing 1 changed file with 147 additions and 48 deletions.
195 changes: 147 additions & 48 deletions src/mrpro/data/IHeader.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,45 +2,127 @@

import dataclasses
from collections.abc import Sequence
from dataclasses import dataclass
from dataclasses import dataclass, field

import numpy as np
import torch
from einops import repeat
from pydicom.dataset import Dataset
from pydicom.tag import Tag, TagType
from typing_extensions import Self

from mrpro.data.KHeader import KHeader
from mrpro.data.MoveDataMixin import MoveDataMixin
from mrpro.data.Rotation import Rotation
from mrpro.data.SpatialDimension import SpatialDimension
from mrpro.utils.remove_repeat import remove_repeat
from mrpro.utils.summarize_tensorvalues import summarize_tensorvalues
from mrpro.utils.unit_conversion import deg_to_rad, mm_to_m, ms_to_s

from .AcqInfo import PhysiologyTimestamps

MISC_TAGS = {'TimeAfterStart': 0x00191016}


def _int_factory() -> torch.Tensor:
return torch.zeros(1, 1, dtype=torch.int64)


@dataclass(slots=True)
class ImageIdx(MoveDataMixin):
"""Acquisition index for each readout."""

average: torch.Tensor = field(default_factory=_int_factory)
"""Signal average."""

slice: torch.Tensor = field(default_factory=_int_factory)
"""Slice number (multi-slice 2D)."""

contrast: torch.Tensor = field(default_factory=_int_factory)
"""Echo number in multi-echo."""

phase: torch.Tensor = field(default_factory=_int_factory)
"""Cardiac phase."""

repetition: torch.Tensor = field(default_factory=_int_factory)
"""Counter in repeated/dynamic acquisitions."""

set: torch.Tensor = field(default_factory=_int_factory)
"""Sets of different preparation, e.g. flow encoding, diffusion weighting."""

user0: torch.Tensor = field(default_factory=_int_factory)
"""User index 0."""

user1: torch.Tensor = field(default_factory=_int_factory)
"""User index 1."""

user2: torch.Tensor = field(default_factory=_int_factory)
"""User index 2."""

user3: torch.Tensor = field(default_factory=_int_factory)
"""User index 3."""

user4: torch.Tensor = field(default_factory=_int_factory)
"""User index 4."""

user5: torch.Tensor = field(default_factory=_int_factory)
"""User index 5."""

user6: torch.Tensor = field(default_factory=_int_factory)
"""User index 6."""

user7: torch.Tensor = field(default_factory=_int_factory)
"""User index 7."""


@dataclass(slots=True)
class IHeader(MoveDataMixin):
"""MR image data header."""

# ToDo: decide which attributes to store in the header
fov: SpatialDimension[float]
"""Field of view [m]."""

te: torch.Tensor | None
te: torch.Tensor | None = None
"""Echo time [s]."""

ti: torch.Tensor | None
ti: torch.Tensor | None = None
"""Inversion time [s]."""

fa: torch.Tensor | None
fa: torch.Tensor | None = None
"""Flip angle [rad]."""

tr: torch.Tensor | None
tr: torch.Tensor | None = None
"""Repetition time [s]."""

misc: dict = dataclasses.field(default_factory=dict)
_misc: dict = dataclasses.field(default_factory=dict)
"""Dictionary with miscellaneous parameters."""

position: SpatialDimension[torch.Tensor] = field(
default_factory=lambda: SpatialDimension(
torch.zeros(1, 1, 1, 1, 1),
torch.zeros(1, 1, 1, 1, 1),
torch.zeros(1, 1, 1, 1, 1),
)
)
"""Center of the excited volume"""

orientation: Rotation = field(default_factory=lambda: Rotation.identity((1, 1, 1, 1, 1)))
"""Orientation of the image"""

patient_table_position: SpatialDimension[torch.Tensor] = field(
default_factory=lambda: SpatialDimension(
torch.zeros(1, 1, 1, 1, 1),
torch.zeros(1, 1, 1, 1, 1),
torch.zeros(1, 1, 1, 1, 1),
)
)
"""Offset position of the patient table"""

acquisition_time_stamp: torch.Tensor = field(default_factory=lambda: torch.zeros(1, 1, 1, 1, 1))

physiology_time_stamps: PhysiologyTimestamps = field(default_factory=PhysiologyTimestamps)

ImageIdx: ImageIdx = field(default_factory=ImageIdx)

@classmethod
def from_kheader(cls, kheader: KHeader) -> Self:
"""Create IHeader object from KHeader object.
Expand Down Expand Up @@ -74,53 +156,70 @@ def get_item(dataset: Dataset, name: TagType):
else:
raise ValueError(f'Item {name} found {len(found_item)} times.')

def get_items_from_all_dicoms(name: TagType):
"""Get list of items for all dataset objects in the list."""
def get_items_from_dicom_datasets(name: TagType) -> list:
"""Get list of items for all datasets in dicom_datasets."""
return [get_item(ds, name) for ds in dicom_datasets]

def get_float_items_from_all_dicoms(name: TagType):
"""Convert items to float."""
items = get_items_from_all_dicoms(name)
return [float(val) if val is not None else None for val in items]

def make_unique_tensor(values: Sequence[float]) -> torch.Tensor | None:
"""If all the values are the same only return one."""
if any(val is None for val in values):
def get_float_items_from_dicom_datasets(name: TagType) -> list[float]:
"""Get float items from all dataset in dicom_datasets."""
items = []
for item in get_items_from_dicom_datasets(name):
try:
items.append(float(item))
except (TypeError, ValueError):
# None or invalid value
items.append(float('nan'))
return items

def as_5d_tensor(values: Sequence[float]) -> torch.Tensor:
"""Convert a list of values to a 5d tensor."""
tensor = torch.as_tensor(values)
tensor = repeat(tensor, 'values-> values 1 1 1 1')
tensor = remove_repeat(tensor, 1e-12)
return tensor

def all_nan_to_none(tensor: torch.Tensor) -> torch.Tensor | None:
"""If all values are nan, return None."""
if torch.isnan(tensor).all():
return None
elif len(np.unique(values)) == 1:
return torch.as_tensor([values[0]])
else:
return torch.as_tensor(values)

# Conversion functions for units
def ms_to_s(ms: torch.Tensor | None) -> torch.Tensor | None:
return None if ms is None else ms / 1000

def deg_to_rad(deg: torch.Tensor | None) -> torch.Tensor | None:
return None if deg is None else torch.deg2rad(deg)

fa = deg_to_rad(make_unique_tensor(get_float_items_from_all_dicoms('FlipAngle')))
ti = ms_to_s(make_unique_tensor(get_float_items_from_all_dicoms('InversionTime')))
tr = ms_to_s(make_unique_tensor(get_float_items_from_all_dicoms('RepetitionTime')))

# get echo time(s). Some scanners use 'EchoTime', some use 'EffectiveEchoTime'
te_list = get_float_items_from_all_dicoms('EchoTime')
if all(val is None for val in te_list): # check if all entries are None
te_list = get_float_items_from_all_dicoms('EffectiveEchoTime')
te = ms_to_s(make_unique_tensor(te_list))

fov_x_mm = get_float_items_from_all_dicoms('Rows')[0] * float(get_items_from_all_dicoms('PixelSpacing')[0][0])
fov_y_mm = get_float_items_from_all_dicoms('Columns')[0] * float(
get_items_from_all_dicoms('PixelSpacing')[0][1],
)
fov_z_mm = get_float_items_from_all_dicoms('SliceThickness')[0]
fov = SpatialDimension(fov_x_mm, fov_y_mm, fov_z_mm) / 1000 # convert to m
return tensor

fa = all_nan_to_none(deg_to_rad(as_5d_tensor(get_float_items_from_dicom_datasets('FlipAngle'))))
ti = all_nan_to_none(ms_to_s(as_5d_tensor(get_float_items_from_dicom_datasets('InversionTime'))))
tr = all_nan_to_none(ms_to_s(as_5d_tensor(get_float_items_from_dicom_datasets('RepetitionTime'))))

te_list = get_float_items_from_dicom_datasets('EchoTime')
if all(val is None for val in te_list):
# if all 'EchoTime' entries are None, try 'EffectiveEchoTime',
# which is used by some scanners
te_list = get_float_items_from_dicom_datasets('EffectiveEchoTime')
te = all_nan_to_none(ms_to_s(as_5d_tensor(te_list)))

try:
fov_x = mm_to_m(
get_float_items_from_dicom_datasets('Rows')[0]
* float(get_items_from_dicom_datasets('PixelSpacing')[0][0])
)
except (TypeError, ValueError):
fov_x = float('nan')
try:
fov_y = mm_to_m(
get_float_items_from_dicom_datasets('Columns')[0]
* float(get_items_from_dicom_datasets('PixelSpacing')[0][1])
)
except (TypeError, ValueError):
fov_y = float('nan')
try:
fov_z = mm_to_m(get_float_items_from_dicom_datasets('SliceThickness')[0])
except (TypeError, ValueError):
fov_z = float('nan')
fov = SpatialDimension(fov_z, fov_y, fov_x)

# Get misc parameters
misc = {}
for name in MISC_TAGS:
misc[name] = make_unique_tensor(get_float_items_from_all_dicoms(MISC_TAGS[name]))
return cls(fov=fov, te=te, ti=ti, fa=fa, tr=tr, misc=misc)
misc[name] = as_5d_tensor(get_float_items_from_dicom_datasets(MISC_TAGS[name]))
return cls(fov=fov, te=te, ti=ti, fa=fa, tr=tr, _misc=misc)

def __repr__(self):
"""Representation method for IHeader class."""
Expand Down

0 comments on commit d7cb064

Please sign in to comment.