-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
139 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
import torch | ||
|
||
from mrpro.data import SpatialDimension | ||
from mrpro.data.KTrajectory import KTrajectory | ||
from mrpro.data.traj_calculators.KTrajectoryCalculator import KTrajectoryCalculator | ||
|
||
|
||
class KTrajectorySpiral(KTrajectoryCalculator): | ||
"""A Spiral variable density trajectory. | ||
Implements the spiral trajectory calculation as described in | ||
Simple Analytic Variable Density Spiral Design by Kim et al., MRM 2003""" | ||
|
||
def __init__( | ||
self, | ||
max_gradient: float, | ||
max_slewrate: float, | ||
fov: SpatialDimension | float, | ||
angle: float, | ||
acceleration_per_interleave: float = 1.0, | ||
density_factor: float = 1.0, | ||
gamma: float = 42577478, | ||
): | ||
"""Create a spiral trajectory calculator. | ||
Parameters | ||
---------- | ||
max_gradient | ||
Maximum gradient amplitude [T/m]. | ||
max_slewrate | ||
Maximum slew rate [T/m/s]. | ||
density_factor | ||
Density factor alpha. | ||
fov | ||
Field of view [m]. | ||
acceleration_per_interleave | ||
Acceleration per interleave. | ||
Overall acceleration is (acceleration_per_interleave/n_interleaves), | ||
where n_interleaves is determined by k1_idx | ||
angle | ||
Angle between interleaves [rad]. | ||
Usully set to 2pi/n_interleaves | ||
gamma | ||
Gyromagnetic ratio [Hz/T]. | ||
""" | ||
self.density_factor = density_factor | ||
self.max_gradient_gamma = max_gradient * gamma | ||
self.max_slewrate_gamma = max_slewrate * gamma | ||
self.acceleration_per_interleave = acceleration_per_interleave | ||
self.angle = angle | ||
|
||
if isinstance(fov, float): | ||
self.fov = fov | ||
elif fov.x != fov.y: | ||
raise ValueError('Only square FOV is supported.') | ||
elif fov.z != 0: | ||
raise ValueError('Only 2D trajectories are supported.') | ||
else: | ||
self.fov = fov.x | ||
|
||
if self.fov <= 0: | ||
raise ValueError('FOV must be positive.') | ||
if self.acceleration_per_interleave <= 0: | ||
raise ValueError('Acceleration per interleave must be positive.') | ||
if self.max_gradient_gamma <= 0: | ||
raise ValueError('Max gradient must be positive.') | ||
if self.max_slewrate_gamma <= 0: | ||
raise ValueError('Max slew rate must be positive.') | ||
if self.density_factor <= 0: | ||
raise ValueError('Density factor alpha must be positive.') | ||
|
||
def __call__( | ||
self, | ||
*, | ||
n_k0: int, | ||
k1_idx: torch.Tensor, | ||
encoding_matrix: SpatialDimension, | ||
**_, | ||
) -> KTrajectory: | ||
""" | ||
Calculate the spiral trajectory. | ||
Parameters | ||
---------- | ||
n_k0 | ||
Number of samples along a spiral interleave. | ||
k1_idx | ||
Integer index of the interleaves | ||
encoding_matrix | ||
Dimensions of the encoding matrix. | ||
Only square matrices are supported. | ||
Returns | ||
------- | ||
Spiral Trajectory | ||
""" | ||
if encoding_matrix.x != encoding_matrix.y: | ||
raise ValueError('Only square encoding matrices are supported.') | ||
if encoding_matrix.z != 1: | ||
raise ValueError('Only 2D trajectories are supported.') | ||
|
||
lam = 0.5 * (encoding_matrix.x / self.fov) | ||
n_turns = 1 / ( | ||
1 - (1 - (2 * self.acceleration_per_interleave) / encoding_matrix.x) ** (1 / self.density_factor) | ||
) # eq. 10 | ||
max_angle = 2 * torch.pi * n_turns | ||
end_time_amplitude = (lam * max_angle) / (self.max_gradient_gamma * (self.density_factor + 1)) # eq. 5, Tes | ||
end_time_slew = torch.sqrt(lam * max_angle**2 / (self.max_slewrate_gamma)) / ( | ||
self.density_factor / 2 + 1 | ||
) # eq. 8, Tea | ||
|
||
transition_time_slew_to_amplitude = ( | ||
end_time_slew ** ((self.density_factor + 1) / (self.density_factor / 2 + 1)) | ||
* (self.density_factor / 2 + 1) | ||
/ end_time_amplitude | ||
/ (self.density_factor + 1) | ||
) ** (1 + 2 / self.density_factor) # eq. 9, Ts2a | ||
|
||
has_amplitude_phase = transition_time_slew_to_amplitude < end_time_slew | ||
end_time = end_time_amplitude if has_amplitude_phase else end_time_slew | ||
|
||
def tau(t: torch.Tensor) -> torch.Tensor: | ||
"""Normalized time function.""" | ||
# eq. 11 | ||
slew_phase = (t / end_time_slew) ** (1 / (self.density_factor / 2 + 1)) | ||
slew_phase = slew_phase * ((t >= 0) * (t <= transition_time_slew_to_amplitude)) | ||
if not has_amplitude_phase: | ||
return slew_phase | ||
amplitude_phase = (t / end_time_amplitude) ** (1 / (self.density_factor + 1)) | ||
amplitude_phase = amplitude_phase * ((t > transition_time_slew_to_amplitude) * (t <= end_time_amplitude)) | ||
return slew_phase + amplitude_phase | ||
|
||
t = torch.linspace(0, end_time, n_k0) | ||
tau_t = tau(t) | ||
k = lam * tau_t**self.density_factor * torch.exp(1j * max_angle * tau_t) # eq. 2 | ||
phase_rotation = torch.exp(self.angle * k1_idx) | ||
k = k[None, :] * phase_rotation[:, None] | ||
trajectory = KTrajectory(kx=k.real, ky=k.imag, kz=torch.zeros_like(k.real)) | ||
return trajectory |