Skip to content

Oxygen588/redis-work-queue

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Redis Work Queue

A work queue, on top of a redis database, with implementations in Python, Rust, Go, C# and TypeScript (Node.js).

This provides no method of tracking the outcome of work items. This is fairly simple to implement yourself (just store the result in the redis database with a key derived from the work item id). If you want a more fully-featured system for managing jobs, see our Collection Manager.

Implementations in other languages are welcome, open a PR!

Documentation

In addition to the primary overview below, each implementation has its own examples and API reference.

  • Python: PyPI MIT License

  • Rust: Crates.io docs.rs MIT License

  • Go: Go Report Card

    GoDoc MIT License

  • Node.js (TypeScript): TypeScript Report Card npm MIT License

Overview

All the implementations share the same operations, on the same core types, these are:

Items

Items in the work queue consist of an id, a string, and some data, arbitrary bytes.

For convenience, the IDs are often randomly generated UUIDs, however they can be customized. Another item with the same ID as a previous item shouldn't be added until the previous item has been completed.

Adding an item

Python: WorkQueue.add_item, Rust: WorkQueue::add_item, Node.js: WorkQueue::add_item, Go: WorkQueue.AddItem

Adding an item is exactly what it sounds like! It adds an item to the work queue. It will then either be in the queue or being processed (before coming back to the queue if the processing fails) until the job is completed.

Leasing an item

Python: WorkQueue.lease, Rust: WorkQueue::lease, Node.js: WorkQueue::lease, Go: WorkQueue.Lease

Workers wanting to receive a job and complete it must start by obtaining a lease.

When requesting a lease, you exchange an expiry time for an item. The worker should then complete the item before the expiry time by calling complete. If complete isn't called in time, it's assumed that the worker died and the item is returned to the queue for another worker to pick up.

This means that a worker can receive a job that another worker has already partially or fully completed (and then died before calling complete) or even for two workers to be simultaneously working on the same job if the lease expiry was too short (try to avoid this if possible!). It's therefore important that workers are written in a way that won't cause problems if a worker starts again after another worker has already fully or partially completed the task, or is working on it at the same time. This allows a fully resilient system.

The work queue cannot loose track of a job once it's been added, so, as long as workers keep successfully working, a job will always be run to completion (even if it is run multiple times in that process).

If you're unhappy about jobs being run more than once, see But I never want my job to run more than once.

Storing the result of a work item

The work queue provides no method of tracking the outcome of work items. This is fairly simple to implement yourself (just store the result in the redis database with a key derived from the work item id). If you want a more fully-featured system for managing jobs, see our Collection Manager.

Handling errors

If an error occurs and the job should be retried, later on, by the same or different worker, then the worker should not call complete and should obtain another lease and work on the next item, ignoring the one it was previously processing. When the previous lease expires, it will be returned to the work queue and will be retried. For example:

while True:
    job = work_queue.lease(100)
    # ... do some work ...
    if should_try_again_later:
        # Don't call complete, just get another lease
        continue
    # ... finish the work ...
    work_queue.complete(job)

If an error occurs that means the job shouldn't be retried, you should send this error to the correct place (perhaps the same place you put your results) and then call complete. The job then won't be run again.

But I never want my job to run more than once

Before following the instructions below, you should think really hard about the title statement. If the job can't run more than once then, and the worker dies during the work, the work will be left incomplete, forever... and ever... and ever... (unless you have your own error recovery system)

It's possible to write almost all jobs in a way which allows it to be restarted if a worker node dies. If you can it's probably worth the effort!

I still think I want my job to only ever possibly run once

If this is the case, you should call complete (and check the return value) immediately after obtaining the lease.

For example, in Python:

job = queue.lease(1000)
if queue.complete(job):
    # This will only run once, per job, ever, even if the worker dies
    foo(job)

This works because complete returns true iff it is the worker that completed the job. So while lease may return the same job many times, complete(job) will return true only once per job.

Completing an item

Python: WorkQueue.complete, Node.js: WorkQueue.Complete, Rust: WorkQueue::complete, Go: WorkQueue.Complete

Complete marks a job as completed and remove it from the work queue. After complete has been called (and returns true), no workers will receive this job again.

complete returns a boolean indicating if the job has been removed and this worker was the first worker to call complete. So, while lease might give the same job to multiple workers, complete will return true for only one worker.

Storing the result

See Storing the result of a work item

Cleaning

Light cleaning

Python: WorkQueue.light_clean, Rust implementation planned, no Go or C# implementation planned

When a worker dies while processing a job, or abandons a job, the job is left in the processing state until it expires. The role of light cleaning is to move these jobs back to the main work queue so another worker can pick them up.

The interval light cleaning should be run on should be approximately equal to the shortest lease time you use.

Deep cleaning

Python and Rust implementations planned, no Go or C# implementation planned

In addition to this, a worker dying in the middle of a call to complete can leave database items that are no longer associated with an active job. The job of a deep clean is to iterate over these keys and make sure the database is clean.

It's very rare that deep cleaning is needed, but it can happen if you get really unlucky, so it should be run automatically but infrequently.

The cleaning process we provide runs this every 6 hours by default.

Cleaning process

When there are many workers of different types, it's simpler just to have a dedicated process running the cleaning. We provide a simple cleaner, both in Python and Rust.

Other operations

Getting the queue length

Python: WorkQueue.queue_len, Rust: WorkQueue::queue_len, Go: WorkQueue.QueueLen, Node.js: WorkQueue.queueLen

Getting the number of leased items

Python: WorkQueue.processing, Rust: WorkQueue::processing, Node.js: WorkQueue.processing, Go: WorkQueue.QueueLen

This includes items being worked on and abandoned items (see Handling errors) yet to be returned to the main queue.

Testing

The client implementations each have their own (very simple) unit tests. Most of the testing is done through the integrations tests, located in the tests directory.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 25.9%
  • Python 22.7%
  • Go 18.8%
  • TypeScript 18.1%
  • C# 11.1%
  • Shell 3.3%
  • JavaScript 0.1%