It turns out that twitter only keeps links for a year. Which is super lame. So here is a living document of everything I find on the internet that is awesome.
https://github.com/ianozsvald/featherweight_web_api
-- automatically generate a web api for a python function
--a site for talks about python
http://arxiv.org/abs/1606.03476
--an interesting paper about Generative Adversarial Imitation Learning
http://inhabitat.com/video-nikola-teslas-dream-is-finally-a-reality-with-wi-fi-powered-electronics/
--ambient backscatter - completely battery free technology
https://www.opendatascience.com/
--odsc blog posts
https://www.ices.utexas.edu/about/news/350/
--Navier-Stokes equations explained
http://www.darpa.mil/news-events/2016-06-17
--darpa is funding machine learning algorithms that generate machine learning algorithms.
http://arxiv.org/abs/1606.05340
--proof that deep networks can expose nonlinearities in nonlinear space, translating them into flat fields.
https://www.oreilly.com/learning/hello-tensorflow
--a great intro to tensorflow
https://www.facebook.com/quartznews/videos/1202874983079535/
--an ai algorithm that figures out what sound an object should make
https://golem.ph.utexas.edu/category/2016/06/how_the_simplex_is_a_vector_sp.html
-- how the simplex is a vector space
https://github.com/josephmisiti/awesome-machine-learning
-- awesome machine learning libraries list
https://www.safaribooksonline.com/library/view/python-cookbook-3rd/9781449357337/ch01s05.html
--implementation of a priority queue
https://www.cs.bris.ac.uk/~montanar/teaching/dsa/dijkstra-handout.pdf
-- dijkstra's with priority queue
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
-- scala for java programmers
https://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
--functional data structures
http://www.oreilly.com/programming/free/files/functional-programming-python.pdf
--functional programming in python
http://tinkersphere.com/stores
--where to get a raspberry pi in nyc
http://blog.smola.org/post/145983963411/leaving-cmu
--ml guy heads to amazon
http://exploreflask.readthedocs.io/en/latest/views.html
--interesting set of patterns for flask
http://stackoverflow.com/questions/29987323/how-do-i-send-data-from-js-to-python-with-flask
--flask from jquery
--jquery cdn
http://stackoverflow.com/questions/1034621/get-current-url-in-web-browser
-- get current url from browser
http://stackoverflow.com/questions/558518/how-can-i-serialize-an-object-to-json-in-javascript
--object serialization in javascript
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation
-- getting location from browser
https://pypi.python.org/pypi/honcho
--foreman clone in python
--an interesting discussion about timezones
https://teamtreehouse.com/community/nested-loops-in-flask-how-to-iterate-and-make-nested-lists
-- nested forloops in flask
https://medium.com/@handaru/build-recommendation-engine-using-graph-cbd6d8732e46#.y6b7vd4g3
--recommender engine with graphs
http://www.cs.yale.edu/homes/perlis-alan/quotes.html
--platitudes about programming
https://www.youtube.com/watch?v=3N__tvmZrzc
--programming languages class
http://stackoverflow.com/questions/32311366/alembic-util-command-error-cant-find-identifier
https://devcenter.heroku.com/articles/heroku-postgresql
--how to update your database with migrations when flask-migrate fails to work on heroku
--an interesting debate on intelligence enhancing drugs
--Neural turing machines
http://minimaxir.com/2016/06/interactive-reactions/
--interesting analysis of public facebook posts
-- how to detect money laundering, with examples
--spark setup
https://courses.edx.org/courses/course-v1:BerkeleyX+CS105x+1T2016/info
--spark course
--collaborative filtering via alternating least squares with implementation in python
https://mathiasbynens.be/notes/shell-script-mac-apps
--appify your shell scripts
--fuzzy matching with python data frames
https://github.com/dgrtwo/fuzzyjoin
--fuzzy join in R
http://conferences.oreilly.com/strata/hadoop-big-data-ny/public/schedule/speakers
--strata hadoop speakers
http://conferences.oreilly.com/strata/hadoop-big-data-ny
--strata hadoop NY
http://conferences.oreilly.com/strata
--strata conf
--odsc east
http://mlconf.com/events/new-york-city-ny/
--mlconf nyc
http://icml.cc/2016/?page_id=1519
--workshops at a glance
http://icml.cc/2016/?page_id=97
--tutorials at icml
http://icml.cc/2016/?page_id=1839
--schedule icml
--icml papers
https://sites.google.com/site/icmlworkshoponanomalydetection/
--anomaly detection workshop
https://spark.apache.org/docs/0.9.0/mllib-guide.html
--spark mllib docs
https://spark.apache.org/docs/0.9.0/python-programming-guide.html
--pyspark
https://www.youtube.com/watch?v=wmw8Bbb_eIE&app=desktop
--tensorflow intro
--your brain has a delete button
https://mlalgorithm.wordpress.com/2016/06/08/hierarchical-clustering/
--hierarchical clustering
https://github.com/unitedstates
--united states github
https://github.com/jmcarp/robobrowser
--bad ass web scraper
https://arxiv.org/abs/1606.09458
--ensemble voting methods
http://www.umiacs.umd.edu/~hal/docs/daume04rkhs.pdf
--math hardcore
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
--lstm
--Bayesian salad
--from nothing to nn's
--compute the median fast
http://machinelearningmastery.com/applied-deep-learning-in-python-mini-course/
--deep learning at breakneck speed
--deep learning for code generation
--AI and justice from the whitehouse
--an experiment confirming that time travel is possible
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
--theoretical machine learning course
http://ec2-52-51-244-37.eu-west-1.compute.amazonaws.com
--narrative flow analysis with som
http://www.analyticbridge.com/m/group/discussion?id=2004291%3ATopic%3A304182
--data science book
--anomaly detection
--syntax net is open source!
--audio api
https://www.opendatascience.com/blog/understanding-principal-component-analysis/
--PCA explained
--great description of RNNs for time series (what they are not)
http://science.tumblr.com/post/147401742140/the-most-beautiful-equation
--recursion
https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn/
--rnn applications
https://github.com/llllllllll/lazy_python and https://github.com/llllllllll/codetransformer
-- hacking python for fun and profit!
-- good blog
http://tech.magnetic.com/2016/04/demystifying-logistic-regression.html
--simple intro to logistic regression and ML
https://github.com/mcraig2/pygotham-talk/blob/master/tflow.ipynb
--tensorflow intro
https://pypi.python.org/pypi/ad/1.3.2
--automatic differentiation
https://pypi.python.org/pypi/yappi
--profiler for python
http://kcachegrind.sourceforge.net/html/Home.html
--visualize the profiling from yappi
http://mike.place/talks/pygotham/#1
--document summarization
https://www.youtube.com/watch?v=0VTI1BBLydE
--stanford music generation with RNNs
https://github.com/MattVitelli/GRUV
--source code
http://oubiwann.blogspot.com/2014/07/oscon-2014-theme-song-andrew-sorensen.html
--andrew sorenson keynote on music generation
-- for mobile development
https://github.com/spotify/annoy
--nearest neighbor implementation
http://www.cs.cmu.edu/~ggordon/singh-gordon-kdd-factorization.pdf
--collective matrix factorization
http://videolectures.net/cmulls08_singh_rlm/
--collective matrix factorization
http://www.benjamintd.com/blog/spynet/
an rnn that writes Python!
http://askubuntu.com/questions/761180/wifi-doesnt-work-after-suspend-after-16-04-upgrade
-- fix wifi issue
https://www.opendatascience.com/blog/the-forgotton-optimization-topic-set-diversity/
--optimization texhnique
--conv net theory
http://multithreaded.stitchfix.com/blog/2016/07/21/skynet-salesman/
--RL deep Q
https://github.com/deepmind/rc-data
--deep learning language data set
https://github.com/rouseguy/europython2016_dl-nlp/tree/master/notebooks
--deep learning language nlp
--svm face rec
https://www.reddit.com/r/textdatamining/
--textmining reddit
http://arxiv.org/abs/1503.04069
--an analysis of LSTM
https://web.stanford.edu/~arbenson/cme193.html
--scientific computation in python
--stanford convolutional neural networks course with numpy
-- a very awesome blog
https://github.com/tzutalin/labelImg
--graphical label annotation
https://www.nyu.edu/projects/bowman/bowman2016phd.pdf
--modeling natural language with learned representations
https://www.mapr.com/blog/design-patterns-recommendation-systems-%E2%80%93-everyone-wants-pony
--recommender system
--interesting analysis and visualization of stories
--3D modeling in Python
--simple flow equation
https://github.com/EricSchles/paper-notes
--from kapathary, looks super cool
--how decisions are made
https://github.com/EricSchles/drmad
--hyper parameter tuning, some folks on reddit seem to think this is yet another useless technique.
https://github.com/EricSchles/reddit_crawlers
--reddit crawler that for some reason has a serious deep learning component, worth investigating
https://github.com/dyelax/Adversarial_Video_Generation/tree/master/Code
--an implementation of adversarial networks! Definitely need to read through in detail
http://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html
--part of a series on model selection, looks pretty good.
http://www.futurecrunch.com.au/writing/
--political economy writing
--sane examples of pandas and R
https://qbox.io/blog/sparse-matrix-multiplication-elasticsearch-apache-spark
--elasticsearch matrix multiplication
-- machine learning for first responders
--vopal wabbit
http://mike.place/talks/pygotham/#p1
--Document summarization
http://github.com/coxlab/prednet --recurrent convolutional net
https://github.com/MacLeek/trackmac --tracking project time on mac
https://github.com/HackerHouseYT/Smart-Mirror --smart miror w/ raspbery pi
http://distill.pub/2016/augmented-rnns/ --RNNs
https://medium.com/@USCTO/public-input-and-next-steps-on-the-future-of-artificial-intelligence-458b82059fc3#.vad6ol11a --interesting read on ML
http://blog.quantopian.com/optimize_capacity/ --sharpe Ratio
https://unu.edu/fighting-human-trafficking-in-conflict --human trafficking in conflict
https://www.datacamp.com/courses/intro-to-python-for-data-science?utm_content=buffer556a6&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --data camp python class
http://www.aosabook.org/en/500L/a-python-interpreter-written-in-python.html --python interpretter written in python
https://deepmind.com/blog/wavenet-generative-model-raw-audio/ --wave net for audio
https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa#.3e9v5nggx --machine language translation
http://www.rightrelevance.com/search/articles/hero?article=e036c156aa408a235aa740162e3b1cfd2e0e985c&query=python&taccount=pythonrr --python intel distro
http://fusion.net/story/344884/sex-slave-bars-in-united-states/ --great set of visuals about human trafficking
https://m.youtube.com/playlist?list=PLmImxx8Char9Ig0ZHSyTqGsdhb9weEGam And https://m.youtube.com/watch?v=sU_Yu_USrNc --Stanford nlp lectures
http://www.rightrelevance.com/search/articles/hero?article=4c40ce09cb544b00b68580b7866fe18ce48a27eb&query=python&taccount=pythonrr --sandman library
https://www.facebook.com/inthenow/videos/681969348620104/ --ambulance drone
http://www.pyimagesearch.com/2016/09/26/a-simple-neural-network-with-python-and-keras/ --minimal neural network with Keras
https://github.com/datascopeanalytics/traces --uneven time series analysis
https://blog.monkeylearn.com/the-definitive-guide-to-natural-language-processing/ --high level walk through of NLP concepts
https://www.yhat.com/ops-demos/ --ml demos with keras / opencv
http://bit.ly/2eNfcOs --wrapper around Google charts API
https://github.com/metagrover/ES6-for-humans --a good set of descriptions of javascript conventions, symbols and syntax
https://github.com/wireservice/agate --data discovery tool
http://www.primaryobjects.com/2013/01/27/using-artificial-intelligence-to-write-self-modifying-improving-programs/ --program that generates code
http://textminingonline.com/getting-started-with-word2vec-and-glove-in-python --word2vec vs GloVe
https://mostafa-samir.github.io/ml-theory-pt3/ --an introduction to bias variance trade off
https://www.opendatascience.com/blog/bayesian-deep-learning/ and https://www.opendatascience.com/blog/bayesian-deep-learning-part-ii-bridging-pymc3-and-lasagne-to-build-a-hierarchical-neural-network/ --neural nets and bayesian thinking
https://inviqa.com/blog/graphs-database-sql-meets-social-network --loops in SQL, graph traversal in SQL
https://blog.bigchaindb.com/blockchains-for-artificial-intelligence-ec63b0284984#.dzilfvdfq --blockchain ml
http://pytorch.org/ --neual nets
https://engineering.instagram.com/dismissing-python-garbage-collection-at-instagram-4dca40b29172#.75j94rygt --Python Garbage Collection
http://dustintran.com/talks/Tran_Edward.pdf --probability modeling
https://www.r-bloggers.com/outlier-detection-with-mahalanobis-distance/ --outlier detection
http://yann.readthedocs.io/en/master/ --yet another neuaral network library
https://arxiv.org/abs/1701.06538?utm_content=buffer26227&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --flow of control in neural networks
http://peterdowns.com/posts/first-time-with-pypi.html --making a pypi package
https://github.com/lenagroeger/gifs --data visualization gifs
https://github.com/mbernico/snape --realistic dummy data for testing algorimths.
https://research.fb.com/prophet-forecasting-at-scale/ --facebook forecasting library
sudo killall coreaudiod
-- for when screen hero audio doesn't work
https://pypi.python.org/pypi/ERAlchemy --Create ER diagrams "for free"
http://students.brown.edu/seeing-theory/?vt=4 --visual descriptions of basic probability
https://blog.dominodatalab.com/fitting-gaussian-process-models-python/ --gaussian processes for prediction in python
http://www.kdnuggets.com/2017/03/yhat-beginner-guide-customer-segmentation.html --pedogogical intro to clustering
http://dan.iel.fm/emcee/current/user/line/ --parameter estimation with MCMC
http://nipy.org/nitime/api/generated/nitime.timeseries.html --time series analysis
http://fb09-pasig.umwelt.uni-giessen.de/spotpy/ --spotpy docs for doing simulation of data
https://github.com/slavivanov/Style-Tranfer --style transfer code with a conv net in keras
http://www.datasciencecentral.com/profiles/blogs/top-10-ipython-tutorials-for-data-science-and-machine-learning --whole bunch of ml notebooks
https://arstechnica.co.uk/information-technology/2017/03/google-jpeg-guetzli-encoder-file-size/ --file compression.
https://blog.jisungkim.com/machine-learning-and-art-9ea2c9342180#.2ve57gv6f -- art and ml examples
http://www.kdnuggets.com/2017/03/simple-xgboost-tutorial-iris-dataset.html?utm_content=buffer8924b&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer --xgboost tutorial python
http://blog.yhat.com/posts/python-generated-powerpoint.html --power point generator
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf -scikit learning cheat sheet
http://deeplearning.net/tutorial/deeplearning.pdf --deep learning in python book theano numpy
http://www.markhneedham.com/blog/2017/03/25/luigi-externalprogramtask-example-converting-json-csv/ --luigi intro
https://github.com/fchollet/keras-resources --keras resources
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016890/pdf/12859_2016_Article_1236.pdf -- generalized logistic regression
https://github.com/rajshah4/image_keras -- image classification
http://www.pyimagesearch.com/2017/04/17/real-time-facial-landmark-detection-opencv-python-dlib/ --facial recognition for video
https://tech-forward-2.glitch.me/ --list of awesome tech orgs
http://www.datasciencecentral.com/profiles/blogs/introduction-to-outlier-detection-methods?utm_content=buffer0fb5c&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --an introduction to outlier detection
http://theorangeduck.com/page/phase-functioned-neural-networks-character-control?utm_content=buffereda7e&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --phase function neural networks - might be useful for timeseries
https://www.quantinsti.com/blog/trading-using-machine-learning-python/#DataScience -- timeseries prediction in data science parlence.
https://github.com/wayaai --a very cool deep learning company
https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3
--how to work with keras and VGG16 (also from keras.applications.vgg16 import VGG16; model = VGG16()
)
http://www.kdnuggets.com/2017/04/ai-maturity-model.html --maturity model
https://medium.com/airbnb-engineering/automated-machine-learning-a-paradigm-shift-that-accelerates-data-scientist-productivity-airbnb-f1f8a10d61f8?from=timeline&isappinstalled=0 --artificial intelligence automation
http://p.migdal.pl/2017/04/30/teaching-deep-learning.html --deep learning keras intro
https://www.quantinsti.com/blog/trading-using-machine-learning-python/#DataScience -- timeseries in python
http://www.kdnuggets.com/2017/03/naive-sharding-centroid-initialization-method.html?utm_content=buffer45425&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- k-means improvement
http://www.datasciencecentral.com/profiles/blogs/10-deep-learning-terms-explained-in-simple-english?utm_content=buffer6e829&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- list of machine learning terms
http://flowingdata.com/2017/05/02/shifting-incomes-for-young-people/ --job data
http://www.rightrelevance.com/search/articles/hero?article=b8c3fc25c7f0238393be0d0ad4fc93fa074be5f6&query=data%20science&taccount=ml_toparticles --mortality data
http://cmawer.github.io/trainspotting/trainspotting-blog.html --train detection and direction detection
http://www.kdnuggets.com/2017/04/datascience-introduction-anomaly-detection.html --anamoly detection
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python?utm_content=buffer85c3f&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --kalman and bayesian filters in python
http://www.kdnuggets.com/2016/06/open-source-machine-learning-degree.html?utm_content=bufferea858&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- open source data science degree
https://medium.com/merantix/picasso-a-free-open-source-visualizer-for-cnns-d8ed3a35cfc5?platform=hootsuite --cnn visualizer
https://medium.com/intuitionmachine/deep-adversarial-learning-is-finally-ready-and-will-radically-change-the-game-f0cfda7b91d3 -- good basic description of generative adversarial neural networks.
http://www.pyimagesearch.com/2016/08/10/imagenet-classification-with-python-and-keras/ --keras image processing tutorial
https://www.datascience.com/resources/tools/skater -- model interpretation library
http://www.datasciencecentral.com/profiles/blogs/how-to-tell-a-compelling-story-with-data-6-rules-6-tools?overrideMobileRedirect=1 --telling data stories
https://github.com/gaojiuli/tomd --converts HTML into markdown
https://medium.com/@karpathy/alphago-in-context-c47718cb95a5 --super awesome description of AlphaGo
https://opendatascience.com/rec-system/?utm_content=52586516&_hsenc=p2ANqtz-9jGizLlpsoa76ETOX2LRnsRKzzER0lIeENGuQuIvUflcllijdwfT6L6w-md3zQOEiTZp3xaIy1l0CsoeDgKVLRhzkPKg&_hsmi=52595398 --recommender system intro in Python
https://opendatascience.com/blog/factorization-machines-for-recommendation-systems/?utm_campaign=Newsletters&utm_source=hs_email&utm_medium=email&utm_content=52586516&_hsenc=p2ANqtz-_Vr8oIhp5ceuxkCEIrj9ccwSKBPIedXDF0ORf1j2E1dN6JzTR1RwAlSNVTU-eb6uHdMS4secVkw0s5ryG5qne6SioKVg&_hsmi=52595398 --more recommender stuff in Python
https://opendatascience.com/time-series-analysis-with-generalized-additive-models/?utm_content=52586516&_hsenc=p2ANqtz-9oWCL-QDRrDQOcDJdmmzUvRdBBnRf_L8cn5epiWWHWOdOVzwCEcWZUP8U-Hv6ZoUI1hrzfyt-Vf7jlEoFjxoqR7FeIGg&_hsmi=52595398 --timeseries analysis with additive models
http://babble-rnn.consected.com/docs/babble-rnn-generating-speech-from-speech-post.html --speech processing in keras
https://github.com/ZWMiller/svdRec -- recommender system with SVD
http://blog.echen.me/2017/05/30/exploring-lstms/?utm_content=bufferb0490&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer -- recurrent neural networks in java
https://github.com/aredridel/how-to-read-code/blob/master/how-to-read-code.md -- how to read code
https://2016.foss4g-na.org/sites/default/files/slides/FOSS4G_machine_learning.pdf -- ml and geospatial
https://github.com/EricSchles/reveal.js --js slides in browser
https://hilaryparker.com/ -- R programmer worth following
https://github.com/starcolon/vor-knowledge-graph -- open knowledge graph generator from wikipedia
https://en.wikipedia.org/wiki/AIML -- AI markup language
http://python-for-multivariate-analysis.readthedocs.io/a_little_book_of_python_for_multivariate_analysis.html -- a fantastic introduction to multivariate analysis with a great explanation of LDA, PCA
https://help.gooddata.com/display/doc/Normality+Testing+-+Skewness+and+Kurtosis --understanding the results of the normal test in scipy
http://www.statisticssolutions.com/correlation-pearson-kendall-spearman/ -- understanding different correlation tests
http://nbviewer.jupyter.org/gist/aflaxman/6871948 -- understanding bootstraping
http://www.stat.pitt.edu/stoffer/tsa4/tsaEZ.pdf --introduction to timeseries analysis
http://arch.readthedocs.io/en/latest/index.html --advanced timeseries modeling
http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/ -- timeseries modeling with keras
http://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/ -- timeseries modeling with keras (part 2)
https://www.amazon.com/Deep-Time-Forecasting-Python-Introduction-ebook/dp/B01N100IPR -- timeseries forecasting with keras book
http://www.stata.com/meeting/5nasug/TSFiltering_beamer.pdf --band filtering
https://thehackerdiary.wordpress.com/2017/06/09/it-is-ridiculously-easy-to-generate-any-audio-signal-using-python/ --make music with Python
https://semaphoreci.com/community/tutorials/generating-fake-data-for-python-unit-tests-with-faker -- a pretty decent data faking package.
https://sflscientific.com/blog/2017/2/10/predicting-stock-volume-with-lstm -- stockmarket analysis with RNNs
https://kndrck.co/indexing-faces-on-instagram.html --horrifying and creepy, but useful in the anti trafficking context - scraping faces from instagram
https://serverlesscode.com/post/rich-jones-interview-django-zappa/ -- AWS lambda
http://www.kdnuggets.com/2017/03/working-numpy-matrices.html -- tiny intro to numpy
https://github.com/rigetticomputing/pyquil -- quantum cloud computing library for python
http://blog.aylien.com/understanding-customer-frustrations-in-the-airline-industry-with-aspect-based-sentiment-analysis/ -- aspect based sentiment analysis
https://github.com/DistrictDataLabs/yellowbrick -- Visual analysis and diagnostic tools to facilitate machine learning model selection
https://github.com/DistrictDataLabs/partisan-discourse -- build your own nlp corpus
https://pypi.python.org/pypi/baleen/0.3.3 -- build your own nlp corpus
https://github.com/DistrictDataLabs/minke -- nlp feature extractor w/ metadata
https://github.com/ethereum/pyethereum --python interface for ethereum
https://www.wired.com/2016/01/use-code-to-create-sweet-3-d-visualizations-of-electric-fields/ --3-D models
https://www.youtube.com/watch?v=oNf3I1fVmg8&feature=share --tensorflow, spark, advanced algebra things
https://github.com/meetshah1995/pytorch-semseg --semantic image segmentation
https://github.com/bokeh/datashader?utm_content=buffera606e&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- shards big data correctly and geomaps it
http://www.kdnuggets.com/2017/07/strange-loop-deep-learning.html?utm_content=bufferdb453&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --ladder networks explained.
https://github.com/mehrdadn/SOTA-Py?utm_content=bufferd4663&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --routing problem algorithm - "How do you travel from point A to point B in T time under traffic?"
https://github.com/reinforceio/tensorforce -- deep reinforcement learning
http://tensorflow-world-resources.readthedocs.io/en/latest/ --tensorflow intro
https://research.googleblog.com/2017/07/facets-open-source-visualization-tool.html?m=1 -- data viz library of winning and awesomeness.
http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/ -- learning to learn
https://engineering.upside.com/a-beginners-guide-to-optimizing-pandas-code-for-speed-c09ef2c6a4d6 -- pandas optimizations
https://www.technologyreview.com/s/608387/an-algorithm-trained-on-emoji-knows-when-youre-being-sarcastic-on-twitter/?set=608492 -- detecting sarcasm with emojis
https://github.com/blue-yonder/tsfresh --feature extraction for timeseries
https://blog.slavv.com/37-reasons-why-your-neural-network-is-not-working-4020854bd607 -- super good read - debugging neural networks.
https://stats.stackexchange.com/questions/18891/bagging-boosting-and-stacking-in-machine-learning -- boosting bagging and stacking explained!
https://www.buzzfeed.com/peteraldhous/hidden-spy-planes?utm_term=.uu8969pK9#.krQ0O0qe0 -- geo classification example
https://www.analyticsvidhya.com/blog/2017/08/catboost-automated-categorical-data/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+AnalyticsVidhya+%28Analytics+Vidhya%29 -- how to use categorical boosting library
https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf -- a good general book on data science
https://labs.eleks.com/2016/10/combined-different-methods-create-advanced-time-series-prediction.html -- a good use of timeseries techniques
https://repositorio-aberto.up.pt/bitstream/10216/82298/2/37884.pdf -- spatial timeseries data analysis book
https://pdfs.semanticscholar.org/cb6d/e3eeb810a5fe3341118b492aa94ecd5b8c83.pdf -- timeseries analysis
https://medium.com/towards-data-science/gradient-descend-with-free-monads-ebf9a23bece5 -- gradient descent in scala
http://www.paddlepaddle.org/ --baidu's deep learning library
https://ringtheory.herokuapp.com/ -- ring theory database.
https://medium.com/twentybn/visual-explanation-for-video-recognition-87e9ba2a675b -- categorizing actions
https://github.com/adebayoj/fairml -- detect racial bias
https://oneraynyday.github.io/2017/08/20/VC-Dimensions/ -- statistical learning blog
https://machinelearning.apple.com/2017/08/06/siri-voices.html?utm_content=buffer1ad8c&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- text to speech generation
https://twitter.com/planarrowspace/status/901480960587218944/photo/1 -- reinforcement learning
https://hackernoon.com/docker-compose-gpu-tensorflow-%EF%B8%8F-a0e2011d36 --GPU + Docker + tensorflow
http://www.datasciencecentral.com/profiles/blogs/comprehensive-repository-of-data-science-and-ml-resources?utm_content=buffer6ddaa&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- list of lists of data science things
http://nuit-blanche.blogspot.fr/2017/08/projectionnet-learning-efficient-on.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+blogspot/wCeDd+(Nuit+Blanche --projection networks - compressing large network architectures
http://nuit-blanche.blogspot.fr/2017/08/videos-deep-learning-dlss-and.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+blogspot/wCeDd+(Nuit+Blanche -- reinforcement learning videos
http://allendowney.blogspot.com/2015/05/hypothesis-testing-is-only-mostly.html --the true value of computing the p-value. This is very interesting because it gives us not only the use-case of the p-value but also a path forward to test for bias as well.
https://gmarti.gitlab.io/ml/2017/09/07/how-to-sort-distance-matrix.html --agglomerative clustering algorithm visualization in action! The idea here is that by first sorting data according to the hierarchical algorithm you can produce a strong and intuitive clustering visualization of your data.
https://medium.com/towards-data-science/a-brief-overview-of-outlier-detection-techniques-1e0b2c19e561 -- outlier detection - covers a nice overview including three specific examples - z-score, dbscan and isolation forrests. Unfortunately doesn't cover the rest of the types of algorithms that are mentioned in the high level overview.
https://medium.com/towards-data-science/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9 -- A good explanation of the current state of the art for image classification. This article like most of the articles of this kind cover three techniques - R-CNN, Faster-R-CNN and SSD. The computational architecture of each model is explained and some mention of where you might find these models, namely tensorflow is mentioned. They all seem to have similar performance in terms of accuracy. The main area of interest in this article was speed - how fast do the algorithms run. This may appear to be a subtle shift, but typically image classification algorithm explainations of read in the past have only been concerned with performance in terms of accuracy. The fact that folks are now more concerned with speed means we are hitting the upper limit of accuracy.
https://dzone.com/articles/machine-learning-measuring -- a good set of distance metrics used in machine learning problems.
http://goodtables.okfnlabs.org/ -- data validation
https://userinput.io/#/#examples -- userinput testing
https://blog.openai.com/unsupervised-sentiment-neuron/ -- really good sentiment classifier
https://machinelearningmastery.com/transduction-in-machine-learning/ -- transduction defined
https://www.digitaltrends.com/business/washington-post-robot-reporter-heliograf/?utm_content=buffer20089&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --an article on how machines write our news now
https://nlml.github.io/in-raw-numpy/in-raw-numpy-t-sne/ -- a great introduction to t-SNE
https://security-informatics.springeropen.com/articles/10.1186/s13388-017-0029-8 -- two articles on semi supervised learning
https://www.twilio.com/blog/2017/08/geospatial-analysis-python-geojson-geopandas.html -- a super good intro to geospatial analysis in python
https://github.com/dwillis/nyc-maps.git --nyc maps in geojson format
http://jose-coto.com/plotting-geopandas --an awesome analysis of plotting points with a geometry
https://www.datacamp.com/community/tutorials/preprocessing-in-data-science-part-2-centering-scaling-and-logistic-regression#gs.jzWZFRU -- a good analysis of the trade off between logistic regression and k-nearest-neighbors. Knn needs data to scale, logistic regression will do about the same, even with scaled data.
https://monkeylearn.com/blog/beginners-guide-text-vectorization/ -- some text classification stuff. specifically skip thought vectors versus bag of words and then joining the techniques together for better performance.
https://hackernoon.com/machine-learning-with-javascript-part-1-9b97f3ed4fe5 -- machine learning tutorial in javascript
http://www.kdnuggets.com/2017/10/upcoming-meetings-analytics-big-data-science-machine-learning.html?utm_content=buffer3ed10&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --a good explanation of boosting weak classifiers. covers gradient boosting and extreme boosting (xgboost)
http://www.kdnuggets.com/2017/10/understanding-machine-learning-algorithms.html?utm_content=buffer559a8&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- a good overview of decision trees, random forests, support vector machines, and neural networks. The kernal trick of svms is well explained, finally.
https://dzone.com/articles/breakthrough-research-papers-and-models-for-sentim -- neural network sentiment analysis
http://stackabuse.com/parallel-processing-in-python/ -- a good introduction to parallel processing
https://jtsulliv.github.io/stock-movement/?utm_content=buffer0d87f&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --a good introduction to brownian motion and Euler-Maruyama Model time series analysis
https://www.oreilly.com/ideas/deep-matrix-factorization-using-apache-mxnet -- recommender systems
https://becominghuman.ai/following-messi-with-tensorflow-and-object-detection-20ba6d75667 -- custom object detection in video using tensorflow
https://chatbotnewsdaily.com/since-the-initial-standpoint-of-science-technology-and-ai-scientists-following-blaise-pascal-and-804ac13d8151 -- a nice little history for machine learning
http://www.bodowinter.com/tutorial/bw_LME_tutorial1.pdf -- a good introduction to fixed effects
http://www.bodowinter.com/tutorial/bw_LME_tutorial2.pdf -- a good introduction to mixed effects
https://medium.com/towards-data-science/squeeze-and-excitation-networks-9ef5e71eacd7 -- holy crap! 25% performance jump on imagenet
https://github.com/MaxHalford/xam -- interesting ml toolbox
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.042113 -- solving problems in physics with precision without an analytic form.
https://wxs.ca/research/multiscale-neural-synthesis/?utm_content=buffer08f81&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --this is cool multiscale neural style synthesis
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2 --Good intro to state of art in Reinforcement learning
https://github.com/asktree/Asymmetric-Hashing-ANN -- asymmetric hashing algorithm from google - uses asymmetric hashing and beam search to speed up automatic reply
https://www.pyimagesearch.com/2017/10/30/how-to-multi-gpu-training-with-keras-python-and-deep-learning/ -- a good introduction to multiple gpu training for keras
https://medium.com/towards-data-science/the-10-statistical-techniques-data-scientists-need-to-master-1ef6dbd531f7 -- some good model introspection techniques here, also a good basic understanding of splines, PCR and PLS
https://dzone.com/articles/optimizing-k-means-clustering-for-time-series-data -- time series k-means clustering
https://medium.com/towards-data-science/15-stunning-data-visualizations-and-what-you-can-learn-from-them-fc5b78f21fb8 -- a good intro to data visualization best practice
https://twitter.com/AllenDowney/status/926960793261928449 -- an introduction to bell's inequality
https://www.newnorth.com/creating-a-predictive-churn-mode-part-1l/ -- churn modeling basics
https://www.datascience.com/blog/what-is-a-churn-analysis-and-why-is-it-valuable-for-business -- churn modeling modeling high level
http://blog.yhat.com/posts/predicting-customer-churn-with-sklearn.html -- modeling churn with scikit
https://github.com/aloctavodia/Statistical-Rethinking-with-Python-and-PyMC3 -- bayesian book
https://petewarden.com/2017/10/29/how-do-cnns-deal-with-position-differences/?utm_content=bufferd86a2&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- convolutional neural networks introduced in a detailed way.
https://github.com/tomlepaine/fast-wavenet --fast convnets for timeseries analysis
https://medium.com/@keeper6928/how-to-unit-test-machine-learning-code-57cf6fd81765 -- how to test machine learning code
https://machinelearningmastery.com/prepare-photo-caption-dataset-training-deep-learning-model/ -- captioning text for images
https://github.com/Mic92/kshape -- time series clustering
https://www.slideshare.net/HamdanAzhar1/open-data-science-west-introduction-to-emoji-data-science-hamdan-azhar-nov-3-2017-81595966?trk=v-feed&lipi=urn%3Ali%3Apage%3Ad_flagship3_feed%3Bzm0bIKk7TjaWWw5P7THNGA%3D%3D --emoji's are also data
http://vertex.ai/blog/announcing-plaidml?utm_content=buffereb80a&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer --an altnerative to the tensorflow backend
https://www.datasciencecentral.com/forum/topics/k-means-clustering-effect-of-random-seed?utm_content=buffer9a2fb&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- seed matters for k-means
https://randomekek.github.io/deep/deeplearning.html --deep learning reference
https://medium.com/singular-distillation/little-explanations-information-bottleneck-theory-its-possible-link-to-neural-networks-1d4df1badf72 -- mutual information used to study neural networks. I say, so what? But maybe this is a useful thing.
https://schedule.readthedocs.io/en/stable/ --a simple scheduler
https://www.youtube.com/watch?v=3VQ382QG-y4&feature=youtu.be --an introduction to lambda calculus
https://github.com/stitchfix/diamond -- mixed effects models in python
https://github.com/civisanalytics/civisml-extensions -- scikit learning classifier and regressor stacking
https://github.com/caseyclements/pennies -- advanced time series modeling in python
https://arxiv.org/pdf/1607.06520.pdf -- super good paper on identifying gender bias
https://github.com/ericmjl/bayesian-analysis-recipes -- bayesian deep learning examples
https://github.com/mila-udem -- a very neat collection of tools
https://github.com/bnaul/IrregularTimeSeriesAutoencoderPaper -- A recurrent neural network for classification of unevenly sampled variable stars
https://www.youtube.com/user/PyDataTV/videos -- pydata videos
https://www.kdnuggets.com/2017/11/automated-feature-engineering-time-series-data.html?utm_content=buffere2903&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- time series feature engineering
http://www.nehalemlabs.net/prototype/blog/2013/04/05/an-introduction-to-smoothing-time-series-in-python-part-i-filtering-theory/ -- a bunch of smoothing techniques
https://www.kdnuggets.com/2017/07/when-not-use-deep-learning.html -- fantastic explanation of deep learning
https://www.kdnuggets.com/2017/11/10-statistical-techniques-data-scientists-need-master.html?utm_content=bufferd0f6b&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- a survey of statistical techniques
https://www.fullstackpython.com/blog/first-steps-gitpython.html -- python git client
http://pbpython.com/market-basket-analysis.html -- aprori algorithm at work
https://towardsdatascience.com/using-word2vec-for-music-recommendations-bb9649ac2484 -- music word2vec
http://rlhick.people.wm.edu/posts/estimating-custom-mle.html -- how to write a custom MLE with OLS as an example
https://github.com/ipython-books/cookbook-code -- a cookbook of a lot of scientific computing stuff. Mostly a bunch of great patterns for using numpy.
https://pypi.python.org/pypi/thinkx/1.1.2 --thinkbayes package
https://brilliant.org/wiki/stationary-distributions/ -- a very good introduction to Markov Chains. Sadly I know understand graphs, as a consequence, to be just another representation of matrices. Also, markov chains do finally make sense. And interestingly, you can find the steady states of Markov Chains from time to time. (joke)
https://github.com/scrat-online/pySTARMA -- geospatial timeseries ARIMA algorithm. Looks out of date, consider updating.
https://github.com/wkentaro/labelme -- an image annotation tool, which may be useful for annotating various images in image training sets.
https://cupy.chainer.org/?utm_content=bufferc0bef&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- numpy written for cuda
https://einstein.ai/research/hierarchical-reinforcement-learning?utm_content=bufferdcdd1&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- hierarchical RL language models
https://github.com/artpar/languagecrunch -- an NLP server ready to go
https://blog.dominodatalab.com/bias-policing-analysis-traffic-stop-data/?utm_content=buffer8976c&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer -- a great analysis of racial bias
https://towardsdatascience.com/how-to-create-data-products-that-are-magical-using-sequence-to-sequence-models-703f86a231f8 -- a good example of how to use sequence to sequence models in industry.
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6 -- great intro to cross validation, k-fold for sklearn
https://github.com/chrispaulca/waterfall --waterfall is an interesting visualization tool. Most interestingly, it can be used in conjunction with treeinterpretter to produce visualizations for tree based model interpretation - since you can retrain any model on a tree structure, this can be used as a general interpretability visualization across feature space.
https://github.com/andosa/treeinterpreter -- tree interpreter interprets tree based models of any kind. Looks very promising for understanding various models.
https://openreview.net/ -- very interesting set of resources on the papers to understand and internalize within ML
https://towardsdatascience.com/building-a-logistic-regression-in-python-step-by-step-becd4d56c9c8 -- a good explaination of feature engineering for logistic regression
https://en.wikipedia.org/wiki/Silhouette_(clustering) -- used to assess the quality of clustering algorithms
https://www.youtube.com/watch?v=MIKYRZc9A1M -- a fantastic deconstruction of superman
https://www.youtube.com/watch?v=R13BD8qKeTg -- best introduction to bayes I've ever seen
https://github.com/bmabey/pyLDAvis -- LDA visualization library
http://scikit-learn.org/stable/related_projects.html -- a great list of related packages and tools
https://github.com/cytoscape/cytoscape.js -- graph visualization js library
https://realpython.com/blog/python/python-matplotlib-guide/ -- a good introduction to matplotlib
https://gist.github.com/aronwc/8248457 -- gensim and sklearn together
https://en.wikipedia.org/wiki/Synthetic_control_method -- a way of doing natural experiments
http://ecocontrol.readthedocs.io/en/latest/index.html -- interesting timeseries forecasting system
http://www.cs.cornell.edu/~tomf/pyglpk/glpk.html -- interesting looking package
https://github.com/laspy/laspy -- LiDAR
https://medium.com/luminovo/a-refresher-on-batch-re-normalization-5e0a1e902960 -- batch renormalization, better than batch normalization
https://www.linkedin.com/pulse/4-reasons-your-machine-learning-model-wrong-how-fix-bilal-mahmood/ -- bias variance trade off and precision recall
https://www.kaggle.com/marknagelberg/rmsle-function -- root mean squared loss error function
http://www.business-science.io/code-tools/2017/10/28/demo_week_h2o.html -- timeseries automl R
https://towardsdatascience.com/how-i-learned-to-love-parallelized-applies-with-python-pandas-dask-and-numba-f06b0b367138 -- pandas numba dask performance benchmarking
https://machinelearningmastery.com/keras-functional-api-deep-learning/ -- shared layers neural network architecture for keras
https://github.com/titu1994/BatchRenormalization -- batch renormalization in keras
https://www.programcreek.com/python/example/83247/sklearn.cross_validation.KFold -- a good set of automl and cross validation techniques
https://github.com/Britefury/batchup -- a program for batching datasets.
https://github.com/mdbloice/Augmentor -- image augmentation library for deep learning
https://github.com/HIPS/molecule-autoencoder
https://brightthemag.com/legalizing-sex-work-spain-prostitution-human-rights-trafficking-immigration-gender-78b96c05e6fa -- what happens when you decriminalize sex
https://www.arxiv-vanity.com/papers/1803.04488/ -- concept2vec - embeddings for ontological concepts
https://www.oreilly.com/ideas/introducing-capsule-networks -- capsule net introduction
https://medium.freecodecamp.org/understanding-capsule-networks-ais-alluring-new-architecture-bdb228173ddc -- another great intro to capsule net
https://stackoverflow.com/questions/11404156/how-do-i-replace-text-in-a-selection -- sublime magic - replace text in selected area
https://www.youtube.com/watch?v=CY3t11vuuOM -- introduction to LIME
https://github.com/Ahmkel/Keras-Project-Template/blob/master/README.md -- keras templates
http://sigmajs.org/ --sigma.js graph visualization library
List intersection:
https://stackoverflow.com/questions/6369527/python-list-intersection-efficiency-generator-or-filter
https://www.geeksforgeeks.org/python-intersection-two-lists/
-- efficiently combine two lists
https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9 -- linear regression in Python, explained well
http://readingthemarkets.blogspot.com/2010/11/critique-of-granger-causality.html --criticism of granger causality
http://www.statsoft.com/Textbook/Time-Series-Analysis#lags -- statistics book
https://danielcscheer.files.wordpress.com/2012/03/food-stamps-and-poverty-irp-2012.pdf -- a good explanation of a lot of things. A great explaination of the matching problem.
https://medium.com/@Francesco_AI/artificial-intelligence-verticals-ii-fintech-daf6f0bd302c -- finance DIY
http://brohrer.github.io/how_convolutional_neural_networks_work.html --intro to conv nets
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/ -- intro to conv nets
http://betatim.github.io/posts/bayesian-hyperparameter-search/ --smarter grid search
https://medium.freecodecamp.org/how-to-build-interactive-presentations-with-jupyter-notebook-and-reveal-js-c7e24f4bd9c5 --jupyter notebook to slides
https://explosion.ai/blog/sense2vec-with-spacy -- sense to vec - part of speech aware word2vec
https://homes.cs.washington.edu/~marcotcr/blog/lime/ -- LIME intro
https://github.com/TeamHG-Memex/eli5 --super interesting explainability of models
https://keras.io/getting-started/functional-api-guide/ --play with this for more sophisticated models
https://github.com/farizrahman4u/seq2seq -- seq2seq code keras
https://towardsdatascience.com/stochastic-weight-averaging-a-new-way-to-get-state-of-the-art-results-in-deep-learning-c639ccf36a -- state of the art neural networks
https://stats.stackexchange.com/questions/84076/negative-values-for-aic-in-general-mixed-model --A good interpretation of AIC and how to deal with negative values
https://www.datasciencecentral.com/profiles/blogs/swarm-optimization-goodbye-gradients -- alternative to stochastic gradient descent
https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/ -- boosting versus bagging
https://towardsdatascience.com/boosting-algorithm-xgboost-4d9ec0207d -- subtle differences between xgboost and gradient boosted trees
http://www.swig.org/Doc1.3/Python.html --Cython like tool
https://blog.jle.im/entry/purely-functional-typed-models-1.html -- machine learning in haskell
https://www.coursera.org/specializations/aml?siteID=lVarvwc5BD0-BShznKdc3CUauhfsM7_8xw&utm_content=2&utm_medium=partners&utm_source=linkshare&utm_campaign=lVarvwc5BD0 -- coursera deep learning specialization
https://towardsdatascience.com/data2vis-automatic-generation-of-data-visualizations-using-sequence-to-sequence-recurrent-neural-5da8e9d3e43e --data visualization automated with sequence to sequence vectors
https://www.youtube.com/watch?v=jpNLp9SnTF8&t=1581s --interesting neural network architecture - attention, memory
https://machinelearningmastery.com/nonparametric-statistical-significance-tests-in-python/?utm_source=dlvr.it&utm_medium=twitter -- introduction to nonparametric tests
https://multithreaded.stitchfix.com/blog/2018/05/14/two-things-about-power/ -- really great post on the power test
http://blog.datadive.net/selecting-good-features-part-iv-stability-selection-rfe-and-everything-side-by-side/ --feature selection with sklearn
https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0 -- reinterpretation of a very contraversal paper...Don't think I completely agree
https://machinelearningmastery.com/grid-search-arima-hyperparameters-with-python/ --grid search for timeseries
https://www.aiworkbox.com/lessons/specify-pytorch-tensor-minimum-value-threshold --aiworkbox deep learning tutorials
https://stats.stackexchange.com/questions/145566/how-to-calculate-area-under-the-curve-auc-or-the-c-statistic-by-hand --AUC explained, in detail
https://www.kaggle.com/jayatou/xgbregressor-with-gridsearchcv -- good basic xgboost example
https://python-graph-gallery.com/ --graph visualization examples galor!
https://www.youtube.com/watch?v=-sIOMs4MSuA -- Bayesian modeling non-parametric
https://github.com/marcotcr/lime/blob/master/doc/notebooks/Lime%20with%20Recurrent%20Neural%20Networks.ipynb -- LIME with RNN
https://askubuntu.com/questions/1032850/display-and-cursor-are-out-of-sync-on-ubuntu-18-04-tablet -- stop screen flips on ubuntu
https://towardsdatascience.com/precision-vs-recall-386cf9f89488 -- a great explaination of precision and recall
https://github.com/RobRomijnders/weight_uncertainty --neural networks in a bayesian context
https://stackoverflow.com/questions/23415500/pandas-plotting-a-stacked-bar-chart -- how to make a stacked bar chart, the easy way.
https://stackoverflow.com/questions/33271098/python-get-a-frequency-count-based-on-two-columns-variables-in-pandas-datafra -- get frequency counts across multiple rows pandas
https://www.kdnuggets.com/2018/05/10-more-free-must-read-books-for-machine-learning-and-data-science.html -- free data science books!
http://pynash.org/2013/02/12/proxy-objects/ -- proxies in flask, turns out request object is a proxy.
https://en.wikipedia.org/wiki/Mutual_information -- a great intro to mutual information
https://en.wikipedia.org/wiki/Entropy_(information_theory) -- a great intro to entropy
https://blog.google/topics/machine-learning/introducing-machine-learning-practica/ --Keras deep learning course!!!!
https://pypi.org/project/opencv-python/ -- opencv prebuilt binaries (why would you install from source)
https://github.com/slundberg/shap --unified model interpretability package for classification
https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a -- NLP cutting edge
https://github.com/NervanaSystems/nlp-architect -- NLP repo for NLU
https://lwn.net/Archives/ -- updates on source of some pretty important stuff
https://github.com/plasticityai/magnitude -- a very interesting embedding library with lots of utilities
https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machine-learning-platform.html -- ML orchestration
https://www.youtube.com/watch?v=jvwfDdgg93E --property based testing, amazing.
https://www.python-course.eu/index.php -- an advanced python class
http://people.math.carleton.ca/~kcheung/math/notes/MATH1107/index.html -- a nice course on linear algebra, very high level
https://www.dataquest.io/blog/data-science-project-style-guide/?utm_source=twitter&utm_medium=social%20share&utm_content=ds%20project%20style%20guide --a great style guide for writing good data science analysis
https://medium.com/near-ai/are-we-close-to-having-machines-solve-topcoder-problems-cc86d33c4324 -- automatic coding without humans
https://github.com/gboeing/osmnx-examples/blob/master/notebooks/17-street-network-orientations.ipynb -- really cool geospatial viz