Skip to content

Omaraitbenhaddi/ODC-World-Cup-2022-Predictions

Repository files navigation

ODC-World-Cup-2022-Predictions

Project Description

Objective:

  • Prediction of the winner of an international matches Prediction results are "Win / Lose / Draw"
  • Apply the model to predict the result of FIFA world cup 2022.

Data:

      -Nous avons les rangs FIFA de 1993 à 2018 donnés par 
                      https://www.kaggle.com/datasets/tadhgfitzgerald/fifa-international-soccer-mens-ranking-1993now

      - Nous avons les rangs FIFA de 1992-2022 
                      https://www.kaggle.com/datasets/cashncarry/fifaworldranking

      -L’historique des matches de football depuis 1872 donné par 
                      https://www.kaggle.com/datasets/martj42/international-football-results-from-1872-to-2017

     -Les statistiques de chaque équipe depuis 2018 tirées de Wikipédia                      
                      https://en.wikipedia.org/wiki/National_team_appearances_in_the_FIFA_World_Cup#Overall_team_records

     -Les statistiques des joueurs tirées de 
                      https://www.kaggle.com/antoinekrajnc/soccer-players-statistics


     -Fifa index            
                      https://www.fifaindex.com/fr/team/1335/france/fifa23/


     -Football nations Stats  
                      https://fbref.com/en/countries/
      -Football nations Stats  https://fbref.com/en/countries/

       -Players data to scrap https://fbref.com/en/players/e42d61c7/Achraf-Hakimi

Environment and tools

      1. Jupyter Notebook 
      2. Numpy
      3. Pandas
      4. Seaborn
      5. Matplotlib 
      6. Scikit-learn
      7. xgboost 
      8. scipy
      9. joblib

we chose XGBoost in model and got an accuracy of 78% on the training set and 63% accuracy on the test set

Lifecycle

site web

     https://world-cup-2022-predictions.herokuapp.com/