Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add DCI-P3, DCI-P3+, and Display P3 #412

Merged
merged 5 commits into from
Aug 17, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions palette/src/encoding.rs
Original file line number Diff line number Diff line change
Expand Up @@ -8,12 +8,14 @@
pub use self::adobe::AdobeRgb;
pub use self::gamma::{F2p2, Gamma};
pub use self::linear::Linear;
pub use self::p3::{DciP3, DciP3Plus, DisplayP3};
pub use self::rec_standards::{Rec2020, Rec709};
pub use self::srgb::Srgb;

pub mod adobe;
pub mod gamma;
pub mod linear;
pub mod p3;
pub mod rec_standards;
pub mod srgb;

Expand Down
277 changes: 277 additions & 0 deletions palette/src/encoding/p3.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
//! The P3 color space(s) and standards.

use core::marker::PhantomData;

use crate::{
encoding::{FromLinear, IntoLinear, Srgb},
luma::LumaStandard,
num::{Powf, Real},
rgb::{Primaries, RgbSpace, RgbStandard},
white_point::{Any, WhitePoint, D65},
Mat3, Xyz, Yxy,
};

/// The white point of DCI-P3 (Theatrical) is based on a projector with a xenon bulb
/// with a color temperature of ~6300K
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct XenonBulb;

impl<T: Real> WhitePoint<T> for XenonBulb {
fn get_xyz() -> Xyz<Any, T> {
Xyz::new(
T::from_f64(0.314 / 0.351),
T::from_f64(1.0),
T::from_f64(0.335 / 0.351),
)
}
}
Kirk-Fox marked this conversation as resolved.
Show resolved Hide resolved

/// The theatrical DCI-P3 standard.
///
/// This standard uses a gamma 2.6 transfer function and a white point of ~6300K that
/// matches the color of xenon bulbs used in theater projectors
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct DciP3;

impl<T: Real> Primaries<T> for DciP3 {
fn red() -> Yxy<Any, T> {
Yxy::new(T::from_f64(0.680), T::from_f64(0.320), T::from_f64(0.2095))
}
fn green() -> Yxy<Any, T> {
Yxy::new(T::from_f64(0.265), T::from_f64(0.690), T::from_f64(0.7216))
}
fn blue() -> Yxy<Any, T> {
Yxy::new(T::from_f64(0.150), T::from_f64(0.060), T::from_f64(0.0689))
}
}

impl RgbSpace for DciP3 {
type Primaries = DciP3;
type WhitePoint = XenonBulb;

#[rustfmt::skip]
#[inline(always)]
fn rgb_to_xyz_matrix() -> Option<Mat3<f64>> {
// Matrix calculated using https://www.russellcottrell.com/photo/matrixCalculator.htm
Some([
0.4451698, 0.2771344, 0.1722827,
0.2094917, 0.7215953, 0.0689131,
0.0000000, 0.0470606, 0.9073554,
])
}

#[rustfmt::skip]
#[inline(always)]
fn xyz_to_rgb_matrix() -> Option<Mat3<f64>> {
// Matrix calculated using https://www.russellcottrell.com/photo/matrixCalculator.htm
Some([
2.7253940, -1.0180030, -0.4401632,
-0.7951680, 1.6897321, 0.0226472,
0.0412419, -0.0876390, 1.1009294,
])
}
}

impl RgbStandard for DciP3 {
type Space = DciP3;
type TransferFn = P3Gamma;
}

impl LumaStandard for DciP3 {
type WhitePoint = XenonBulb;
type TransferFn = P3Gamma;
}

/// The Canon DCI-P3+ color space and standard.
///
/// This standard has the same white point as [`DciP3`], but has a much wider gamut and
/// no standardized transfer function (left to user preference). The generic `F` in
/// this struct represents the chosen transfer function.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct DciP3Plus<F>(PhantomData<F>);

impl<T: Real, F> Primaries<T> for DciP3Plus<F> {
fn red() -> Yxy<Any, T> {
Yxy::new(T::from_f64(0.740), T::from_f64(0.270), T::from_f64(0.2040))
}
fn green() -> Yxy<Any, T> {
Yxy::new(T::from_f64(0.220), T::from_f64(0.780), T::from_f64(0.8826))
}
fn blue() -> Yxy<Any, T> {
Yxy::new(
T::from_f64(0.090),
T::from_f64(-0.090),
T::from_f64(-0.0866),
)
}
}

impl<F> RgbSpace for DciP3Plus<F> {
type Primaries = DciP3Plus<F>;
type WhitePoint = XenonBulb;

#[rustfmt::skip]
#[inline(always)]
fn rgb_to_xyz_matrix() -> Option<Mat3<f64>> {
// Matrix calculated using https://www.russellcottrell.com/photo/matrixCalculator.htm
Some([
0.5590736, 0.2489359, 0.0865774,
0.2039863, 0.8825911, -0.0865774,
-0.0075550, 0.0000000, 0.9619710,
])
}

#[rustfmt::skip]
#[inline(always)]
fn xyz_to_rgb_matrix() -> Option<Mat3<f64>> {
// Matrix calculated using https://www.russellcottrell.com/photo/matrixCalculator.htm
Some([
1.9904035, -0.5613959, -0.2296619,
-0.4584928, 1.2623460, 0.1548755,
0.0156321, -0.0044090, 1.0377287,
])
}
}

impl<F> RgbStandard for DciP3Plus<F> {
type Space = DciP3Plus<F>;
type TransferFn = F;
}

impl<F> LumaStandard for DciP3Plus<F> {
type WhitePoint = XenonBulb;
type TransferFn = F;
}

/// A gamma 2.6 transfer function used by some P3 variants
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct P3Gamma;

impl<T> IntoLinear<T, T> for P3Gamma
where
T: Real + Powf,
{
#[inline]
fn into_linear(encoded: T) -> T {
encoded.powf(T::from_f64(2.6))
}
}

impl<T> FromLinear<T, T> for P3Gamma
where
T: Real + Powf,
{
#[inline]
fn from_linear(linear: T) -> T {
linear.powf(T::from_f64(1.0 / 2.6))
}
}

/// The Display P3 standard.
///
/// This standard uses the same primaries as [`DciP3`] but with a [`D65`] white point
/// and the [`Srgb`] transfer function.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct DisplayP3;

impl<T: Real> Primaries<T> for DisplayP3 {
fn red() -> Yxy<Any, T> {
Yxy::new(T::from_f64(0.680), T::from_f64(0.320), T::from_f64(0.2290))
}
fn green() -> Yxy<Any, T> {
Yxy::new(T::from_f64(0.265), T::from_f64(0.690), T::from_f64(0.6917))
}
fn blue() -> Yxy<Any, T> {
Yxy::new(T::from_f64(0.150), T::from_f64(0.060), T::from_f64(0.0793))
}
}
impl RgbSpace for DisplayP3 {
type Primaries = DisplayP3;
type WhitePoint = D65;

#[rustfmt::skip]
#[inline(always)]
fn rgb_to_xyz_matrix() -> Option<Mat3<f64>> {
// Matrix calculated using https://www.russellcottrell.com/photo/matrixCalculator.htm
Some([
0.4866327, 0.2656632, 0.1981742,
0.2290036, 0.6917267, 0.0792697,
0.0000000, 0.0451126, 1.0437174,
])
}

#[rustfmt::skip]
#[inline(always)]
fn xyz_to_rgb_matrix() -> Option<Mat3<f64>> {
// Matrix calculated using https://www.russellcottrell.com/photo/matrixCalculator.htm
Some([
2.4931808, -0.9312655, -0.4026597,
-0.8295031, 1.7626941, 0.0236251,
0.0358536, -0.0761890, 0.9570926,
])
}
}

impl RgbStandard for DisplayP3 {
type Space = DisplayP3;
type TransferFn = Srgb;
}

impl LumaStandard for DisplayP3 {
type WhitePoint = D65;
type TransferFn = Srgb;
}

#[cfg(test)]
mod test {
#[cfg(feature = "approx")]
mod conversion {
use crate::{
encoding::p3::{DciP3, DciP3Plus, DisplayP3, P3Gamma},
matrix::{matrix_inverse, rgb_to_xyz_matrix},
rgb::RgbSpace,
};

#[test]
fn rgb_to_xyz_display_p3() {
let dynamic = rgb_to_xyz_matrix::<DisplayP3, f64>();
let constant = DisplayP3::rgb_to_xyz_matrix().unwrap();
assert_relative_eq!(dynamic[..], constant[..], epsilon = 0.0000001);
}

#[test]
fn xyz_to_rgb_display_p3() {
let dynamic = matrix_inverse(rgb_to_xyz_matrix::<DisplayP3, f64>());
let constant = DisplayP3::xyz_to_rgb_matrix().unwrap();
assert_relative_eq!(dynamic[..], constant[..], epsilon = 0.0000001);
}

#[test]
fn rgb_to_xyz_dci_p3() {
let dynamic = rgb_to_xyz_matrix::<DciP3, f64>();
let constant = DciP3::rgb_to_xyz_matrix().unwrap();
assert_relative_eq!(dynamic[..], constant[..], epsilon = 0.0000001);
}

#[test]
fn xyz_to_rgb_dci_p3() {
let dynamic = matrix_inverse(rgb_to_xyz_matrix::<DciP3, f64>());
let constant = DciP3::xyz_to_rgb_matrix().unwrap();
assert_relative_eq!(dynamic[..], constant[..], epsilon = 0.0000001);
}

#[test]
fn rgb_to_xyz_dci_p3_plus() {
let dynamic = rgb_to_xyz_matrix::<DciP3Plus<P3Gamma>, f64>();
let constant = DciP3Plus::<P3Gamma>::rgb_to_xyz_matrix().unwrap();
assert_relative_eq!(dynamic[..], constant[..], epsilon = 0.0000001);
}

#[test]
fn xyz_to_rgb_dci_p3_plus() {
let dynamic = matrix_inverse(rgb_to_xyz_matrix::<DciP3Plus<P3Gamma>, f64>());
let constant = DciP3Plus::<P3Gamma>::xyz_to_rgb_matrix().unwrap();
assert_relative_eq!(dynamic[..], constant[..], epsilon = 0.0000001);
}
}
}
5 changes: 3 additions & 2 deletions palette/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -313,8 +313,9 @@ pub use oklab::{Oklab, Oklaba};
pub use oklch::{Oklch, Oklcha};
#[doc(inline)]
pub use rgb::{
AdobeRgb, AdobeRgba, GammaSrgb, GammaSrgba, LinAdobeRgb, LinAdobeRgba, LinRec2020, LinSrgb,
LinSrgba, Rec2020, Rec709, Srgb, Srgba,
AdobeRgb, AdobeRgba, DciP3, DciP3Plus, DisplayP3, GammaSrgb, GammaSrgba, LinAdobeRgb,
LinAdobeRgba, LinDciP3, LinDciP3Plus, LinDisplayP3, LinRec2020, LinSrgb, LinSrgba, Rec2020,
Rec709, Srgb, Srgba,
Kirk-Fox marked this conversation as resolved.
Show resolved Hide resolved
};
#[doc(inline)]
pub use xyz::{Xyz, Xyza};
Expand Down
53 changes: 53 additions & 0 deletions palette/src/rgb.rs
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,59 @@ pub type AdobeRgb<T = f32> = Rgb<encoding::AdobeRgb, T>;
/// create a value and use it.
pub type AdobeRgba<T = f32> = Rgba<encoding::AdobeRgb, T>;

/// Non-linear DCI-P3, an RGB format used for digital movie distribution.
///
/// This is an RGB standard with a color gamut wider than that of [`Srgb`] and a
/// white point similar to that of a film projector's xenon bulb.
///
/// See [`Rgb`] for more details on how to create a value and use it.
pub type DciP3<T = f32> = Rgb<encoding::DciP3, T>;

/// Non-linear Canon DCI-P3+, an RGB format with a very wide gamut.
///
/// This is an RGB standard with a color gamut much wider than that of [`Srgb`].
/// It uses the same white point as [`DciP3`], but uses a user-defined transfer
/// function, represented here by the generic `F`.
///
/// See [`Rgb`] for more details on how to create a value and use it.
pub type DciP3Plus<F, T = f32> = Rgb<encoding::DciP3Plus<F>, T>;

/// Non-linear Display P3, an RGB format used developed by Apple for wide-gamut
/// displays.
///
/// This is an RGB standard with the same white point and transfer function as
/// [`Srgb`], but with a wider color gamut.
///
/// See [`Rgb`] for more details on how to create a value and use it.
pub type DisplayP3<T = f32> = Rgb<encoding::DisplayP3, T>;

/// Linear DCI-P3.
///
/// You probably want [`DciP3`] if you are looking for an input or output format.
/// This is the linear version of DCI-P3, which is what you would usually convert
/// to before working with the color.
///
/// See [`Rgb`] for more details on how to create a value and use it.
pub type LinDciP3<T = f32> = Rgb<Linear<encoding::DciP3>, T>;

/// Linear DCI-P3+.
///
/// You probably want [`DciP3Plus`] if you are looking for an input or output format.
/// This is the linear version of DCI-P3+, which is what you would usually convert
/// to before working with the color.
///
/// See [`Rgb`] for more details on how to create a value and use it.
pub type LinDciP3Plus<F, T = f32> = Rgb<Linear<encoding::DciP3Plus<F>>, T>;

/// Linear Display P3.
///
/// You probably want [`DisplayP3`] if you are looking for an input or output format.
/// This is the linear version of Display P3, which is what you would usually convert
/// to before working with the color.
///
/// See [`Rgb`] for more details on how to create a value and use it.
pub type LinDisplayP3<T = f32> = Rgb<Linear<encoding::DisplayP3>, T>;

/// Linear Adobe RGB.
///
/// You probably want [`AdobeRgb`] if you are looking for an input or output format.
Expand Down
Loading