-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e7f861f
commit 51015d8
Showing
2 changed files
with
77 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
FROM tensorflow/tensorflow:latest-gpu | ||
WORKDIR /src | ||
COPY /src/tflow.py . | ||
CMD ["python", "tflow.py"] | ||
|
||
#RUN pip install -U jupyterlab pandas matplotlib | ||
#EXPOSE 8888 | ||
#ENTRYPOINT ["jupyter", "lab","--ip=0.0.0.0","--allow-root","--no-browser"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
import tensorflow as tf | ||
#import keras | ||
#from keras.utils import multi_gpu_model | ||
#import keras.backend as k | ||
#https://github.com/microsoft/tensorflow-directml/issues/352 | ||
|
||
# https://www.tensorflow.org/guide/distributed_training | ||
# | ||
# https://www.tensorflow.org/tutorials/distribute/keras | ||
# https://keras.io/guides/distributed_training/ | ||
#strategy = tf.distribute.MirroredStrategy() | ||
#print('Number of devices: {}'.format(strategy.num_replicas_in_sync)) | ||
|
||
#NUM_GPUS = 2 | ||
#strategy = tf.contrib.distribute.MirroredStrategy()#num_gpus=NUM_GPUS) | ||
# not working | ||
strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"]) | ||
#WARNING:tensorflow:Some requested devices in `tf.distribute.Strategy` are not visible to TensorFlow: /replica:0/task:0/device:GPU:1,/replica:0/task:0/device:GPU:0 | ||
#Number of devices: 2 | ||
|
||
|
||
#central_storage_strategy = tf.distribute.experimental.CentralStorageStrategy() | ||
#strategy = tf.distribute.MultiWorkerMirroredStrategy() # not in tf 1.5 | ||
#print("mirrored_strategy: ",mirrored_strategy) | ||
#strategy = tf.distribute.OneDeviceStrategy(device="/gpu:1") | ||
#mirrored_strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0","/gpu:1"],cross_device_ops=tf.contrib.distribute.AllReduceCrossDeviceOps(all_reduce_alg="hierarchical_copy")) | ||
#mirrored_strategy = tf.distribute.MirroredStrategy(devices= ["/gpu:0","/gpu:1"],cross_device_ops=tf.distribute.HierarchicalCopyAllReduce()) | ||
|
||
#print('Number of devices: {}'.format(strategy.num_replicas_in_sync)) | ||
|
||
# https://learn.microsoft.com/en-us/windows/ai/directml/gpu-faq | ||
#a = tf.constant([1.]) | ||
#b = tf.constant([2.]) | ||
#c = tf.add(a, b) | ||
|
||
#gpu_config = tf.GPUOptions() | ||
#gpu_config.visible_device_list = "1"#"0,1" | ||
#gpu_config.visible_device_list = "0,1" | ||
#gpu_config.allow_growth=True | ||
|
||
#session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_config)) | ||
#print(session.run(c)) | ||
#tensorflow.python.framework.errors_impl.AlreadyExistsError: TensorFlow device (DML:0) is being mapped to multiple DML devices (0 now, and 1 previously), which is not supported. This may be the result of providing different GPU configurations (ConfigProto.gpu_options, for example different visible_device_list) when creating multiple Sessions in the same process. This is not currently supported, see https://github.com/tensorflow/tensorflow/issues/19083 | ||
#from keras import backend as K | ||
#K.set_session(session) | ||
|
||
cifar = tf.keras.datasets.cifar100 | ||
(x_train, y_train), (x_test, y_test) = cifar.load_data() | ||
|
||
#with strategy.scope(): | ||
|
||
# https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50 | ||
# https://keras.io/api/models/model/ | ||
parallel_model = tf.keras.applications.ResNet50( | ||
include_top=True, | ||
weights=None, | ||
input_shape=(32, 32, 3), | ||
classes=100,) | ||
# https://saturncloud.io/blog/how-to-do-multigpu-training-with-keras/ | ||
#parallel_model = multi_gpu_model(model, gpus=2) | ||
#from tensorflow.python.keras import backend as K | ||
#tf.keras.set_session(session) | ||
|
||
|
||
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) | ||
# https://keras.io/api/models/model_training_apis/ | ||
parallel_model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"]) | ||
|
||
parallel_model.fit(x_train, y_train, epochs=40, batch_size=5120)#7168)#7168) |